
ZeroHAR: Sensor Context Augments Zero-Shot Wearable Action Recognition
Ranak Roy Chowdhury1, Ritvik Kapila1, Ameya Panse1, Xiyuan Zhang1, Diyan Teng2, Rashmi

Kulkarni2, Dezhi Hong3*, Rajesh K. Gupta1, Jingbo Shang1

1 University of California San Diego
2 Qualcomm

3 Amazon
{rrchowdh, rkapila, apanse, xiz032, rgupta, jshang}@ucsd.edu, {diyateng, rashmik}@qti.qualcomm.com,

hondezhi@amazon.com

Abstract

Wearable Human Action Recognition (wHAR) uses motion
sensor data to identify human movements, which is essen-
tial for mobile and wearable devices. However, traditional
wHAR systems are only trained on a limited set of activi-
ties. Hence, they fail to generalize to diverse human motions,
prompting Zero-Shot Learning (ZSL). Existing ZSL methods
for wHAR focus solely on augmenting labels, such as rep-
resenting them as attribute matrices, images, videos, or text.
We propose ZeroHAR that enhances ZSL by not just focus-
ing on activity labels, but also augmenting motion data with
sensor context features. Our approach incorporates informa-
tion about the sensor type, the Cartesian axis of the data, and
the sensor’s body position, providing the model with crucial
spatial and biomechanical insights. This helps the model to
generalize better to new actions. First, we train the model by
aligning the latent space of the motion time series with its
corresponding sensor context, while distancing it from unre-
lated sensor contexts. Then, we train the model using the tar-
get activity descriptions. We tested our method against eight
baselines on five benchmark HAR datasets with various sen-
sors, placements, and activities. Our model shows exceptional
generalizability across the 18 motion time series classifica-
tion benchmark datasets, outperforming the best baselines by
262% in the zero-shot setting.

Introduction
Wearable HAR predicts human activities using data from
Inertial Measurement Units (IMUs). Existing inertial HAR
systems are often trained on data from a limited set of mo-
tions, collected and annotated within a controlled setting.
These models do not recognize the richer and more diverse
set of motions that humans exhibit in the real world. An-
notating vast amounts of IMU data for all possible human
movements to train a HAR model is not plausible. Hence,
in HAR, although a model may be trained on a limited set
of activities, we expect it to recognize unseen activities after
deployment, a process known as Zero-Shot Learning (ZSL).

ZSL involves training a model on data from seen classes
and evaluating it on test data from unseen classes. To achieve
this objective, ZSL is trained to learn fine-grained attributes
shared among classes that can be generalized to recognize

*Work unrelated to Amazon.
Copyright © 2025, Association for the Advancement of Artificial
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Figure 1: Different Approaches to Zero-shot Inertial HAR.

unseen classes. For example, a model may be trained on
IMU data for “walking” but is expected to recognize “run-
ning” during test time. Both these activities share several
similarities in terms of body posture and limb movements.
For example, both involve an upright posture with a straight
spine and head facing forward, the arms swing alternately
with the legs, and they both require a cyclic movement
pattern of the legs. Such basic body movements constitute
activities at large. Hence, a model that learns these low-
level fine-grained knowledge from the activities that it were
trained on, can recognize unseen activities at test time.

Figure 1 shows how existing work in ZSL extracts fine-
grained details about human activity from different repre-
sentations of these activities: (a) Activity-attribute matrices
that encode basic limb movements and body posture in-
formation in a binary matrix (Wang, Miao, and Hao 2017;
Cheng et al. 2013b,a); (b) Text describing the nature and
type of limb and joint movements involved in various ac-
tivity and feeding the text through a language model to ex-
tract embeddings (Matsuki, Lago, and Inoue 2019; Wu et al.
2020; Moon et al. 2022); (c) Images or videos of people
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Figure 2: Overview of ZeroHAR: (a) Stage I (Motion with Sensor Context Learning): IMU and Sensor Context embeddings
generated by the respective model branches are trained through Multimodal Contrastive Learning. (b) Stage II (Action Recog-
nition): IMU and Activity Description embeddings are trained through Cross-Entropy Loss.

Accelerometer Gyroscope Magnetometer

Metric Linear Acc Angular Vel Magnetic
Field Strength

X-axis Left-Right Forward-
Backward East-West

Y-axis Up-Down Left-Right North-South

Z-axis Forward-
Backward

Clock-
Counterclock

Upward-
Downward

Table 1: Metric and directionality of IMU sensors.

conducting activities and feeding image frames to a vision
model to extract embeddings.

The above methods use motion data as input features to
the model. These motion data are generated by different
IMU sensors located at different body positions. Table 1
shows the different types of IMU sensors, their metric and
directionality. We use the term sensor context to refer to
the information about sensor type, axis, and body position
where the sensor is located.

We hypothesize that adding sensor context to IMU data
provides valuable spatial and biomechanical information,
helping the model learn to recognize actions more effec-
tively. For instance, when identifying the action ”picking up
an object,” IMU data alone might produce similar patterns to
actions like ”tying shoelaces” or ”squatting,” causing confu-
sion. However, if the model knows that the upward move-
ment is detected by an accelerometer on the wrist and the
downward movement by an accelerometer on the thigh, it
can interpret the overall motion as ”upward wrist movement

paired with thigh bending,” allowing it to accurately distin-
guish ”picking up” from similar actions.

To this end, we propose ZeroHAR, to leverage sensor
context knowledge in ZSL for wearable HAR. Fig 2 shows
ZeroHAR’s two-stage training setup. In Stage I, we compli-
ment each IMU measurement with its corresponding sen-
sor context provided as text. ZeroHAR is trained on this
IMU and sensor context through multimodal contrastive
loss. During training, the model learns a joint IMU-text la-
tent space by bringing the latent space of IMU representa-
tion closer to its corresponding sensor context information.
In Stage II, we prompt an LLM to generate precise, fine-
grained bio-mechanical information about human activity.
The pre-initialized model from Stage I is then trained to rec-
ognize actions from an IMU with its corresponding activity
description as the label.

We extensively evaluate ZeroHAR with 12 baselines on
18 benchmark HAR datasets, covering a wide variety of
number and type of IMU sensors and range of human mo-
tions. ZeroHAR resulted in a 262% average improvement in
Zero-Shot Accuracy over the 2nd best results. We also con-
duct ablations and case study to show how the addition of
sensor context in the IMU latent space helps ZeroHAR to
generalize to unseen classes. Our main contributions are as
follows:
• We enhance HAR by integrating motion data with sensor

context for spatial and biomechanical insights.
• We propose a two-stage ZSL framework: combining IMU

with sensor context, then performing activity recognition.
• We present new state-of-the-art performance for ZSL on
18 benchmark wearable HAR datasets.
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Related Works
Zero-Shot Learning (ZSL) extends learned knowledge from
known training classes to unknown classes in testing.
ZSL techniques capture shared low-level semantics among
classes (Socher et al. 2013; Gupta et al. 2023). One-hot en-
coding of classes is inadequate to represent such semantics.
Some ZSL studies for Inertial HAR manually designs class-
attribute matrix, including body posture and limb motion
details. (Wang, Miao, and Hao 2017; Cheng et al. 2013b,a)
(Fig 1(a)). While insightful, manual design is impractical for
large-scale HAR due to diverse range of human motions.

Others represent class names as embeddings to learn se-
mantic space (Matsuki, Lago, and Inoue 2019; Wu et al.
2020) (Fig 1(b)), mitigating domain expertise. Pre-trained
models for motion time series are inspired by the recent
success of large language or multimodal models. Image-
Bind (Girdhar et al. 2023) and IMU2CLIP (Moon et al.
2022) leverage recent large vision-language models (Rad-
ford et al. 2021) to learn a joint embedding across multi-
ple modalities including motion time series and text. How-
ever, both ImageBind and IMU2CLIP are trained on motion
time series collected from head-mounted devices (Grauman
et al. 2022), limiting their generalizability across different
device locations and orientations. Furthermore, several stud-
ies have explored directly applying LLMs for motion time
series classification. For example, HARGPT (Ji, Zheng, and
Wu 2024) processes raw motion time series through LLMs
and incorporates role-play and chain-of-thought strategies
for prompting. ContextGPT (Arrotta et al. 2024) designs
prompt engineering approaches leveraging context informa-
tion. However, since LLMs are not directly trained on raw
motion time series, such methods require extensive context
information that is not usually available, and struggle with
accurately recognizing complex activities.

ZeroHAR incorporates context by complementing mo-
tion data with sensor metadata, providing crucial spatial
and anatomical insights for understanding biomechanics. Its
two-stage pipeline first integrates sensor context into the la-
tent space, enhancing action recognition in the next stage.

Methodology
Fig 2 shows a schematic diagram of ZeroHAR. We first
present the problem setting, followed by our two-stage
training recipe, namely Stage I: IMU-Text Alignment (i.e.,
Fig 2(a)) and Stage II: Action Recognition (i.e, Fig 2(b)).

Problem Statement
Let O and U be two disjoint sets of observed and unobserved
activities, respectively, i.e. O ∩ U = ∅. Let G = O ∪ U
be the set of all activities, and g denote a given activity,
g ∈ G. All the labeled instances for training are from the
observed activities in O. More formally, the training set is
Dtr = {(Xi, Y i)|i = 1, 2, 3, ..., N} where N is the number
of training data points, Xi is a multi-variate time series, and
Y i ∈ O is the activity label corresponding to Xi. In ZSL,
the data and labels for the test set come only from the unob-
served classes: Dte = {(Xi, Y i)|i = 1, 2, 3, ..., Z}, where
Z is the number of test data points and Y i ∈ U .

Algorithm 1: Stage I: Motion with Sensor Context Learning
Input: Dtr, B, M , W , ILM
Hyper-parameters: τ
Output: Trained (K and R)

1: K, P , and R initialized randomly
2: for Xi in Dtr do
3: for b in B do
4: for s in Mb do
5: for w in W do
6: twsb ← “w−axis of s attached to b”
7: Twsb ← R(ILM(twsb)), Twsb ∈ Rh

8: Iiwsb ← P (K(Xi
wsb)), I

i
wsb ∈ Rh

9: Compute LIi
wsb→Twsb

& LTwsb→Ii
wsb

(Eq. (1)
& (2), respectively)

10: end for
11: end for
12: end for
13: Compute LIi→T & LT→Ii (Eq. (3) & (4), respec-

tively)
14: Compute LIi↔T from LIi→T and LT→Ii (Eq. (5))
15: Update K, P , and R based on LIi↔T

16: end for
17: return Trained (K and R)

Let B be the set of body positions with wearable devices,
and b denote a given body position, b ∈ B. Let Mb de-
note the set of IMU sensors at body position b. Then M
denotes the set of IMU sensors at all body positions, hence
M = {M1,M2, ...,Mb, . . . ,M|B|}. Hence, the total num-
ber of IMU sensors attached to the body is

∑|B|
b=1 |Mb|. If s

denotes a given IMU sensor, then Msb denotes IMU sensor s
at body position b. Let W denote the set of axes along which
an IMU records measurements and w denote a given axis,
w ∈ W . All IMUs record data along x−, y−, and z− axes,
so W is constant for every IMU sensor, W = {x, y, z},
|W | = 3. So the total number of channels in a given data
point is |W |

∑|B|
b=1 |Mb|. If l is the number of timestamps in

the data, then Xi ∈ R|W |
∑|B|

b=1 |Mb|×l. And Xi
wsb ∈ Rl de-

note a uni-variate time series from axis, w, of IMU sensor,
s, located at body position, b, for data Xi.

Stage I: Motion with Sensor Context Learning
Sensor Context Construction

Algorithm 1 outlines the procedure. For each IMU time
series, we construct its sensor context, twsb, that corresponds
to: “w−axis of s attached to b” (Line 10). Complimenting an
IMU time series with corresponding sensor context provides
rich spatial and anatomical information that helps model bet-
ter understand biomechanics.

Training We embed twsb using the text encoder of
ImageBind (Girdhar et al. 2023), a Pre-trained IMU-text
Model (ILM ). Unlike BERT (Kenton and Toutanova 2019),
GPT (Radford et al. 2018), or other language models (LM ),
an ILM is pre-trained with both IMU and text. Hence,
ILM ’s text embedding better aligns with IMU than that of
LM ’s. To preserve the IMU-text alignment that ILM ex-
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hibits, we freeze its parameters. The output of ILM is then
passed through a text projection block, R, to extract sensor
metadata embedding output, Twsb, where Twsb ∈ Rh and h
is the hidden dimension of the model (Line 11).

ILM ’s IMU encoder is limited to specific sensors and
body positions, lacking generalization to other IMU con-
figurations. Hence, we use a separate IMU encoder, K,
with a transformer backbone (Zerveas et al. 2021). The uni-
variate IMU data, Xi

wsb, is passed through K, followed by
an IMU projection block, P , to extract IMU embeddings
Iiwsb, Iiwsb ∈ Rh (Line 12). Projection blocks R and P
are learnable non-linear layers that project text and IMU,
respectively, into a shared latent space.

Cross-Modal Contrastive Learning After obtaining
Twsb and Iiwsb, we propose modality-mutual learning for
IMU-text alignment. This involves a joint optimization pro-
cess using a contrastive strategy to refine parameters in both
language extraction and sensor encoders. The goal is to align
the latent space of IMU embeddings with their correspond-
ing textual sensor metadata embeddings while maintain-
ing separation from unrelated sensor metadata. Contrastive
learning (Chen et al. 2020; Jaiswal et al. 2020) pulls similar
points closer (anchor and positive) while pushing dissimilar
points away (anchor and negative), facilitating good repre-
sentation learning. We utilize Cross-Modal Contrastive Mul-
tiview Coding (CMC) (Tian, Krishnan, and Isola 2020) to
achieve similar representation learning capability across dif-
ferent modalities, maximizing the similarity between IMU
embedding and its corresponding sensor metadata embed-
ding while minimizing the similarity between all other pairs
of embeddings via Information Noise Contrastive Estima-
tion (InfoNCE) (Oord, Li, and Vinyals 2018).

For data Xi, the IMU embedding from w axis of s sensor
at body position b, Iiwsb, and its corresponding text embed-
ding, Twsb, are considered a positive pair. To compute the
IMU-to-Text Loss, LIi

wsb→Twsb
, Iiwsb and Twsb are anchor

and positive, respectively. (Iiwsb, Twsb) forms a positive pair.
All other combinations of projections from different sensor
channels (Iiwsb, Tjne) are treated as negative pairs, where
j = {1, 2, ..., |W |}, n = {1, 2, ..., |Me|}, e = {1, 2, ..., |B|}
and (j ̸= w ∧ n ̸= s ∧ e ̸= b). For example, if Iiwsb is
the anchor, then Twsb is its positive and Tjne is one of the
|W |

∑|B|
b=1 |Mb| − 1 negatives. LIi

wsb→Twsb
for Xi is,

LIi
wsb→Twsb

= − log
fn(Iiwsb, Twsb)∑|B|

e=1

∑|Me|
n=1

∑|W |
j=1 fn(I

i
wsb, Tjne)

,

(1)
where fn(A,B) = exp(sim(A,B))/τ and sim is the

cosine similarity function. The numerator computes the sim-
ilarity score between IMU and and its corresponding sensor
metadata embedding while the denominator considers simi-
larities with all available sensor metadata. τ is a temperature
parameter to scale the similarities.

Similarly, to compute the Text-to-IMU Loss, LTwsb→Ii
wsb

,
for data point Xi, (Iiwsb, Twsb) forms a positive pair. All
other combinations of projections from different input in-
stances (Iijne, Twsb) are treated as negative pairs, where
j = {1, 2, ..., |W |}, n = {1, 2, ..., |Me|}, e = {1, 2, ..., |B|}

Algorithm 2: Stage II: Action Recognition
Input: Dtr, G, LLM , ILM , Trained K, P , R from Stage I
Hyper-parameters: c
Output: Trained (K, P , and R)

1: ϕ constructed from G
2: β ← LLM(ϕ)
3: for (Xi, Y i) in Dtr do
4: α← R(ILM(β)), α ∈ Rc|G|×h

5: A ← Mean c embeddings per class from α, A ∈
R|G|×h

6: Aa ← Embedding for activity, a, where a = Y i,
Aa ∈ Rh

7: Ii ← P (K(Xi)), Ii ∈ Rh

8: Compute Li
CE (Eq. (6))

9: Update K, P , and R, based on Li
CE

10: end for
11: return Trained (K, P , and R)

and (j ̸= w ∧ n ̸= s ∧ e ̸= b). If Twsb is the anchor, then
Iiwsb is its positive and Iijne is one of the |W |

∑|B|
b=1 |Mb|−1

negatives. So LTwsb→Ii
wsb

is calculated as,

LTwsb→Ii
wsb

= − log
fn(Iiwsb, Twsb)∑|B|

e=1

∑|Me|
n=1

∑|W |
j=1 fn(I

i
jne, Twsb)

(2)
LIi

wsb→Twsb
and LTwsb→Ii

wsb
are computed in Line 13.

Lines 6 - 13 is parallelized by matrix vectorization for ef-
ficient computation.

The total IMU-to-Text Contrastive Loss, LIi→T , and
Text-to-IMU Contrastive Loss, LT→Ii , over training in-
stance i are computed as,

LIi→T =
1

|W |
∑|B|

b=1 |Mb|

|B|∑
b=1

|Mb|∑
s=1

|W |∑
w=1

LIi
wsb→Twsb

(3)

LT→Ii =
1

|W |
∑|B|

b=1 |Mb|

|B|∑
b=1

|Mb|∑
s=1

|W |∑
w=1

LTwsb→Ii
wsb

(4)

The total Cross-Modal Contrastive Loss for Xi, LIi↔T , is
computed as the average of the two as follows,

LIi↔T =
1

2
(LIi→T + LT i→I) (5)

LIi→T and LT→Ii are computed in Lines 14 and 15, re-
spectively. LIi↔T updates model components, K, R, and
P , in Line 16. The loss minimization ensures high simi-
larity scores for correct IMU and textual sensor metadata
pairs. This bridges the gap between IMU and text, facilitat-
ing cross-modal understanding by joint training.

Stage II: Action Recognition
With K, P , and R pre-initialized via joint IMU and sen-

sor context training, the model has learnt a joint latent space
shared between IMU and text modalities. This will help
ZeroHAR to learn to recognize activities from IMU.
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Activity Description Generation Algorithm 2 outlines
our action recognition pipeline. We prompt GPT-4 (OpenAI
2023), a Large Language Model (LLM ), to generate fine-
grained description for each activity in G which consists of
all observed and unobserved activities. Prompt ϕ is detailed
in Fig 2(b). Since an activity can be explained in numer-
ous ways, we generate c descriptions per activity to obtain
a more stable and less noisy estimate of activity representa-
tion. Given the potential for environmental details in LLM-
generated descriptions, such as ”walk in the park” or ”sleep-
ing soundly,” we design ϕ to focus strictly on bio-mechanics,
body posture, and limb motion, explicitly instructing it to
avoid environmental or metaphorical language. The prompt
is outlined in Fig 2(b). If βg = {βg1 , βg2 , ..., βgc} de-
notes a set of c generated descriptions for activity g, then
β = {β1, β2, ..., βg, ..., β|G|} (Line 7). We manually check
all the generated descriptions to verify their accuracy.

Action Recognition Training β is fed through the text
encoder of the frozen ILM to extract IMU-aligned text em-
beddings, followed by the pre-initialized text projector, R,
from Stage I. The extracted embeddings, α, represent c em-
beddings corresponding to c descriptions for each activity
in G, α ∈ Rc|G|×h, where h is the hidden dimension (Line
9). We average c embeddings per activity from α to extract
A, a single embedding for each activity, A ∈ R|G|×h (Line
10). Representing an activity by the average of c embeddings
instead of one, helps in reducing the variance. Similarly,
the IMU measurements for data point Xi are also passed
through the pre-initialized IMU encoder, K, from Stage I,
followed by an IMU projector, P , which consists of some
learnable non-linear layers, to extract Ii, Ii ∈ Rh (Line 12).

If a is the true activity corresponding to Xi, then (Ii, Aa)
are the corresponding IMU and activity embedding. We
compute cross entropy loss, Li

CE , as the cosine similarity
of (Ii, Ag), with all the activities in G (Line 13). K, R, and
P , are trained by backpropagating Li

CE in Line 14.

Li
CE = − log

exp(sim(Ii, Aa))∑|G|
g=1 exp(sim(Ii, Ag))

(6)

We use different optimizers to train the IMU-related lay-
ers (K, P from Stage I and II) and text-related layers (R
in Stage I and II) of ZeroHAR.

Zero-Shot Action Recognition During testing, we pre-
dict activity with the largest cosine similarity score,

Ŷ i = argmax
g∈U

F (Xi, Ag) (7)

, where g is an activity from the set of unobserved activi-
ties U , Xi ∈ Dte, Ag is the embedding of activity g, F is
ZeroHAR, and Ŷ i is the prediction for Xi.

Experimental Results
Dataset, Baselines, and Experimental Settings
We evaluate on a comprehensive motion time series clas-
sification benchmark, comprising of 18 real-world datasets
that cover diverse activities. These datasets are collected
from various body locations such as head, chest, back, arm,

Training classes Validation  classes Test  classes

Stage I: Training Data

Stage I: Validation Data

80%

20%

Stage II: Training Data Stage II: 
Validation Data

Test Data

Sam
p

les

O observed classes U unobserved classes

Figure 3: Training, validation, and test data splits. Each row
represents #samples and column represent #classes. Note
that #samples in each set may be different. (# - no. of)

wrist, waist, hip, leg, knee and ankle. We categorize these
datasets into three difficulty levels: (1) easy level (with
fewer than 10 activities): Opportunity (Roggen et al. 2010),
UCI-HAR (Anguita et al. 2013), MotionSense (Malekzadeh
et al. 2019), w-HAR (Showail 2022), Shoaib (Shoaib et al.
2014), HAR70+ (Ustad et al. 2023), RealWorld (Sztyler and
Stuckenschmidt 2016), TNDA-HAR (Yang et al. 2024); (2)
medium level (with 10 to 20 activities): PAMAP2 (Reiss
and Stricker 2012), USC-HAD (Zhang and Sawchuk 2012),
Mhealth (Oresti et al. 2014), Harth (Logacjov et al. 2021),
UT-Complex (Shoaib et al. 2016), Wharf (Bruno et al.
2013), WISDM (Weiss 2019), DSADS (Altun, Barshan, and
Tunçel 2010); (3) hard level (with more than 20 activi-
ties): UTD-MHAD (Chen, Jafari, and Kehtarnavaz 2015),
MMAct (Kong et al. 2019). We provide the specific num-
ber of activities for each dataset in Table 2 and detail their
collection settings in Appendix.

We compare ZeroHAR against classification models
with zero-shot capabilities: NuActiv (Cheng et al. 2013b),
SemAtt (Cheng et al. 2013a), NCBM (Wang, Miao,
and Hao 2017), LETS-GZSL (Bhaskarpandit, Gupta, and
Gupta 2022), SemHAR (Matsuki, Lago, and Inoue 2019),
SHARE (Zhang et al. 2023a), NonViz (Al Machot,
R. Elkobaisi, and Kyamakya 2020), ImageBind (Gird-
har et al. 2023), IMU2CLIP (Moon et al. 2022),
IMUGPT (Leng, Kwon, and Plötz 2023) and HARGPT (Ji,
Zheng, and Wu 2024). We also input the 2D visualizations
of motion time series to pre-trained vision-language model
LLaVA (Liu et al. 2024) for comparison. We detail the con-
figurations of baselines in Appendix. As shown in Table 2,
ZeroHAR significantly outperforms all baselines in the zero-
shot setting. We also apply the Wilcoxon-signed rank test
with Holm’s α (5%) following previous works (Holm 1979;
Zhang et al. 2023b). The Wilcoxon-signed rank test indi-
cates that the improvement of ZeroHAR compared with all
the baselines is statistically significant, with p-values signif-
icantly lower than 0.05 (e.g., p-value = 8× 10−6 for Image-
Bind, which has the highest F1 score among the baselines).

We evaluate the ZSC performance of ZeroHAR and
baselines using average per-class accuracy and macro-F1
score. Macro-F1 is defined as macro-F1 = 1

|U |
∑|U |

g=1 2 ×
Precg×Recg
Precg+Recg

, where Precg and Recg , represent the preci-
sion and recall for activity g, respectively, and |U | is the total
number of unseen activities in the test set, Dte.

Fig 3 illustrates the train, validation, and test sets for
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Num Classes 4 6 6 7 7 7 8 8 12 12 12 12 13 14 18 19 27 35

Level Easy Medium Hard Avg

NuActiv Acc 10.4 10.1 13.4 9.5 12.3 0.0 7.9 11.6 8.5 10.1 4.8 3.6 5.8 2.1 3.6 1.4 2.3 1.7 6.6
F1 11.5 2.7 8.5 4.8 10.6 0.0 7.8 9.4 6.7 5.2 0.8 3.2 3.9 1.1 2.4 0.9 1.2 0.8 4.5

SemAtt Acc 25.4 7.6 14.6 9.8 17.3 0.0 13.4 11.3 9.5 9.4 6.8 4.7 5.8 2.7 4.6 1.8 2.7 2.2 8.3
F1 18.6 3.4 11.1 6.8 10.1 0.0 9.2 9.7 7.5 6.8 1.4 5.3 2.7 0.6 3.7 1.1 0.4 0.8 5.5

NCBM Acc 18.4 8.6 10.4 7.8 10.5 0.0 11.2 13.4 9.4 3.7 4.1 5.6 7.1 1.7 4.2 1.5 2.2 1.8 6.8
F1 11.4 3.7 5.6 4.9 7.8 0.0 6.4 7.1 7.5 2.1 1.1 2.9 3.5 0.7 2.6 0.3 0.8 1.1 3.9

LETS-GZSL Acc 24.8 10.6 15.2 19.3 11.8 0.0 14.5 10.1 11.3 8.6 5.9 7.5 7.8 2.4 4.5 1.8 2.1 1.5 8.9
F1 12.5 4.2 10.2 6.3 9.4 0.0 8.7 7.8 5.8 3.6 1.2 5.3 2.8 1.4 2.6 1.1 0.8 1.2 4.7

SemHAR Acc 20.7 8.6 13.4 10.5 13.8 7.5 13.2 8.7 12.4 6.9 5.4 6.2 7.1 2.5 4.6 1.3 2.4 1.6 8.2
F1 11.4 3.2 10.2 5.9 9.6 3.6 7.2 6.8 5.9 4.8 1.2 5.1 4.5 1.4 4.3 0.8 0.3 0.4 4.8

SHARE Acc 28.5 10.2 15.1 12.7 16.8 8.4 14.1 15.6 12.7 9.2 6.5 7.2 8.4 2.6 5.8 1.4 2.5 1.3 9.9
F1 14.7 4.6 10.9 6.7 12.4 6.4 8.6 9.8 6.5 5.7 1.2 4.8 5.4 1.3 2.1 0.6 1.1 1.2 5.8

NonViz Acc 24.6 9.4 12.6 9.4 12.8 7.3 10.5 12.6 7.7 6.8 3.8 4.6 3.8 1.3 4.2 1.5 1.2 0.8 7.5
F1 12.4 3.2 8.9 5.7 8.6 4.8 7.3 9.2 4.8 3.6 0.8 3.5 2.8 0.5 2.1 0.4 0.6 0.7 4.4

ImageBind Acc 28.8 14.0 16.7 14.2 18.7 0.0 17.8 18.7 15.1 10.9 7.6 8.7 9.4 3.5 6.8 1.8 2.5 3.1 11.0
F1 27.6 7 13.8 9.1 14.8 0.0 9.9 13.1 6.7 6.8 1.1 5.9 5.8 2.0 4.1 0.9 1.4 1.7 7.3

IMU2CLIP Acc 24.8 15.9 16.1 6.4 14.7 6.2 5.9 8.3 2.0 11.9 7.5 2.4 6.8 1.7 4.2 4.1 3.5 5.9 8.2
F1 9.7 9.4 8.9 3.1 8.9 2.0 4.5 4.0 1.5 9.2 1.1 0.9 2.5 0.8 2.8 0.9 1.8 1.7 4.1

IMUGPT Acc 9.6 1.3 10.9 64.2 11.4 0.0 17.3 13.8 9.2 6.1 9.3 4.5 11.7 2.4 8.5 7.2 3.9 2.1 10.7
F1 9.8 0.7 3.8 36.9 9.2 0.0 4.3 5.8 1.2 7.2 2.3 1.5 7.8 1.6 6.2 2.1 0.2 0.9 5.6

HARGPT
Acc 29.7 14.8 10.7 3.9 21.5 32.8 11.9 12.6 10.7 9.2 10.8 29.3 6.8 5.3 5.7 5.9 3.1 2.2 12.6
F1 17.1 12.3 5.8 2.8 11.6 9.9 5.6 5.1 2.4 3.3 6.8 7.3 4.1 1.7 3.2 3.8 1.3 1.5 5.9

LLaVA Acc 39.7 17.4 23.5 0.0 14.8 12.5 15.9 11.8 9.6 10.7 19.4 16.8 1.9 3.4 6.1 5.2 3.8 3.7 12.0
F1 13.7 6.1 6.7 0.0 4.3 3.4 3.8 2.7 1.1 2.8 7.3 5.2 0.9 0.1 0.4 0.8 0.2 0.3 3.3

ZeroHAR Acc 72.6 28.9 38.5 54.0 57.2 65.1 42.9 53.6 70.0 61.8 68.2 69.0 32.5 23.8 26.0 28.9 18.7 8.6 45.6
F1 59.0 20.7 30.8 38.6 54.9 32.6 35.3 50.1 59.4 50.2 57.5 41.1 33.1 12.4 23.7 22.4 17.0 7.7 35.9

Only Stage-II Acc 28.4 11.4 14.7 10.6 8.7 13.2 14.8 18.2 7.8 8.9 6.3 4.9 7.8 3.2 4.1 5.4 2.7 3.1 9.7
F1 11.2 7.3 8.2 4.6 6.1 10.9 7.4 6.8 3.5 5.2 7.6 3.2 2.4 0.4 1.7 2.6 1.7 0.4 5.1

Multitask Acc 64.2 22.6 29.4 38.9 46.2 54.2 32.1 44.8 28.9 38.8 54.7 57.8 26.8 12.1 19.7 14.2 14.5 6.2 33.7
F1 37.5 13.2 21.4 21.7 45.3 21.4 26.8 31.2 19.0 32.5 26.4 34.7 24.1 9.5 18.8 13.7 14.6 5.9 23.2

Table 2: Zero-Shot performance. We bold the best and underline the second best. ZeroHAR performs the best compared with
both baselines and our model ablations. The last column shows the average performance across 18 datasets.

ZeroHAR. The test set contains novel classes, U , unseen
during training. To enable early stopping, we reserve data
from novel classes, O, to form a validation set, Ova, at the
start of training. During Stage II, ZeroHAR trains only on
Otr, where Otr = O − Ova. Additionally, part of Otr is
reserved for Stage I validation.

We normalize our datasets and train all baselines with suf-
ficient hyper-parameter tuning. Since our datasets are widely
heterogeneous in terms of number of data points, sensors,
body positions, and sampling frequency, we obtain better
performance via cursory tuning of dataset-specific hyper-
parameters. We set the temperature parameter τ , in Algo-
rithm 1, to 0.05 and the number of descriptions per activity,
c, in Algorithm 2 to 10. We use Adam optimizers to update
the IMU modality (IMU Encoder and IMU projectors P and
Q for Stage I and II, respectively) and the text modality (text

projector R). We use a batch size of 128, learning rate of
0.001, 8 self-attention layers with 8 heads for the IMU En-
coder, a dropout of 0.01 and a hidden dimension, h, of 128,
for both Stage I and II. We save the model with the lowest
validation loss and evaluate it on the test set.

Results
Table 2 summarizes the results. Activity-attribute methods
underperform, while pre-trained models fare better. Image-
Bind and IMU2CLIP, trained on head-mounted data, lack
generalization to other sensor locations. IMUGPT struggles
with cross-dataset generalization and requires separate train-
ing per dataset. HARGPT and LLaVA focus on simple activ-
ities but are limited by their training on non-motion data and
reliance on careful prompt design. All these models also fail
to handle varying device orientations. In contrast, ZeroHAR
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Average Accuracy Average Macro F1
2nd best results 12.6 7.3
ZeroHAR’s results 45.6 35.9

% relative improve-
ment of ZeroHAR +262% +392%

Table 3: Relative performance comparison of ZeroHAR with
2nd best results in Table 2).

(a) Test Accuracy vs #unseen
classes, |U |

(b) Stage II’s Loss Conver-
gence

Figure 4: (a) compares how the zero-shot accuracy changes
with the number of unseen classes in test set, |U |. (b) shows
the effect of Stage I training on loss convergence of Stage II.

achieves state-of-the-art performance, demonstrating robust
generalization across device locations, orientations, and ac-
tivities.

Table 3 highlights ZeroHAR’s performance improve-
ments over the second-best results. Relative improvements
are measured from Table 2. Among baselines, HARGPT (Ji,
Zheng, and Wu 2024) leads in Accuracy, and Image-
Bind (Girdhar et al. 2023) excels in Macro F1. Compar-
ing ZeroHAR’s average performance across 18 datasets, it
achieves a remarkable relative improvement of 262% in Ac-
curacy and 392% in Macro F1 over these baselines.

Test Accuracy vs no. of unseen classes, |U | To compare
how test accuracy on unseen classes vary with the number
of unseen classes, |U |, we compare ZeroHAR with Image-
Bind on Opportunity dataset. Result in Fig 4(a) shows that
accuracy goes down with increase in |U | for both models,
but ZeroHAR surpasses ImageBind for all |U |.

Loss Convergence To assess the effect of Stage I (Mo-
tion with Sensor Context Training) on ZeroHAR, we com-
pare its loss convergence when trained on both Stage I and II
versus Stage II alone. Fig 4(b) shows results on Opportunity
dataset. ZeroHAR trained with Stage I converges faster and
achieves a lower loss during Stage II compared to the model
trained solely on Stage II. Stage I used contrastive training
of IMU with textual sensor context to initialize the shared
space, simplifying Stage II learning.

Ablations
We analyze ZeroHAR’s performance through various abla-
tions to justify our training decisions. The last two rows of
Table 2 what happens if we conduct 1) only Stage II train-
ing and 2) train Stage I and Stage II parallelly in a multitask

(a) IMU with Body Position -
Stage I

(b) IMU with Class Description
- Stage II

Figure 5: t-SNE vizualization of ZeroHAR on PAMAP2
showing ‘o’ - IMU embeddings with (a) ‘x’ - embedding
of body positions for Stage I and (b) ‘x’ - embedding of un-
seen test classes’ description in fold 3 for Stage II.

fashion. Conducting only Stage II training gives poor results
as model is not trained on the sensor context. Training for
both Stage I and Stage II parallelly significantly improves
performance because of the addition of sensor context. But
the performance still falls short of ZeroHAR which trains
Stage I and stage II sequentially. This is because by first
training for Stage I, it provides a joint IMU-text latent space
that helps to recognize actions in Stage II.

Case Study on IMU-Text Alignment

Fig 5 depicts the IMU-text latent space learned by ZeroHAR
on PAMAP2. Fig 5(a) demonstrates ZeroHAR’s ability to
align IMU data from different body parts with their cor-
responding word embeddings, highlighting that joint train-
ing of IMU with its corresponding sensor context can bring
the latent space of IMU closer to text. Fig 5(b) shows that
despite not being trained on any data from these unseen
classes, ZeroHAR can align their IMU data with their re-
spective textual activity description embeddings.

Conclusion

We present ZeroHAR, a two-stage framework to tackle
the Zero-Shot Learning problem in Inertial HAR. In Stage
I: Motion with Sensor Context Training, we compliment
IMU with sensor context information to learn spatial and
biomechanical information about motion. It brings the latent
spaces of IMU and text closer to each other, which facilitates
mapping IMUs to textual activity representations in the sub-
sequent stage. We compared ZeroHAR with 12 baselines on
18 benchmark HAR datasets to evaluate its efficacy on Zero-
Shot HAR. Our ablations and case study highlight the supe-
rior alignment of IMU with text-based sensor context and
activity representations. Using sensor context as additional
features to aid action recognition provides a new avenue to
explore for similar IoT-based applications. This will enable
us to engage in more advanced natural language queries, rea-
soning, and responses related to sensory data.
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