ESC-GAN: Extending Spatial Coverage of Physical Sensors

Xiyuan Zhang, Ranak Roy Chowdhury, Jingbo Shang, Rajesh Gupta, Dezhi Hong University of California, San Diego

xiyuanzh@ucsd.edu

Outline

- Motivation
- Method
- Experiments
- Conclusion

Outline

- Motivation
- Method
- Experiments
- Conclusion

Background

- Geo-sensors help monitor our ecosystem
 - Global warming, flood forecasting, agriculture
- However, geo-sensors are sparsely deployed!
 - Physical constraints, economic costs
- <u>Extend the Spatial Coverage of sensory data without deploying additional sensors</u>

(a) Original Station Data (b) Extended Data

Challenges & Opportunities

- Complete miss of temporal information
 - Fundamentally different from traditional imputation task
- Existence of local and global context
- Multi-scale structure
 - Fine-grained data for accurate local patterns
 - Coarse-grained data for "macro" view

Outline

- Motivation
- Method
- Experiments
- Conclusion

• Local 3D Convolution paired with Global Attention Module

• Local 3D Convolution paired with Global Attention Module

Local 3D Convolution paired with Global Attention Module

Global

Attention

• Local 3D Convolution paired with Global Attention Module

• Local 3D Partial Convolution

$$\mathbf{Y} = \begin{cases} \mathbf{W}^T (\mathbf{X} \odot \mathbf{M}) \frac{|\mathbf{1}|_1}{|\mathbf{M}|_1} + b, & \text{if } |\mathbf{M}|_1 > 0\\ 0, & \text{otherwise.} \end{cases}$$

• Global Attention Module

$$f(\mathbf{X}, \mathbf{X'}) = \frac{e^{(\theta(\mathbf{X}) - \mu_{\theta})^T (\phi(\mathbf{X'}) - \mu_{\phi}) + \mu_{\theta}^T \phi(\mathbf{X'})}}{\sum_{\mathbf{X'}} e^{(\theta(\mathbf{X}) - \mu_{\theta})^T (\phi(\mathbf{X'}) - \mu_{\phi}) + \mu_{\theta}^T \phi(\mathbf{X'})}}$$

$$O_{t,y,x} = \sum_{\forall t',y',x'} f(X_{t,y,x}, X_{t',y',x'}) g(X_{t',y',x'})$$

• Multi-scale Structure

- Irregular and stochastic forms, high variations
- Generative Adversarial Network (GAN)
- Generator, Discriminator, adversarial training

Optimization

- Reconstruction Loss $L_{rec} = \frac{1}{N_{masked}} \sum_{t} \sum_{y} \sum_{x} (1 M_{t,y,x}) (Z_{t,y,x} X_{t,y,x})^2$
- Variation Loss $L_{var} = \frac{1}{N} \left(\sum_{(y,x) \in R, (y+1,x) \in R} ||\tilde{X}_{t,y+1,x} \tilde{X}_{t,y,x}||_1 \right)$

+
$$\sum_{(y,x)\in R, (y,x+1)\in R} ||\tilde{X}_{t,y,x+1} - \tilde{X}_{t,y,x}||_1)$$

- Adversarial Loss $L_D = \mathbb{E}_{\mathbf{x} \sim P_{\mathbf{X}}(\mathbf{x})} [RELU(1 D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim P_{\mathbf{Z}}(\mathbf{z})} [RELU(1 + D(\mathbf{z})]$ $L_{adv} = L_G = -\mathbb{E}_{\mathbf{z} \sim P_{\mathbf{Z}}(\mathbf{z})} [D(\mathbf{z})]$
- Objective $L = L_{rec} + \lambda_{var}L_{var} + \lambda_{adv}L_{adv}$

Outline

- Motivation
- Method
- Experiments
- Conclusion

Dataset

Dataset	Lat	Lon	Time	Granularity	#Grid Cells
HadCRUT	36	72	2004	5°× 5 °	5,194,368
CMAP	72	144	503	$2.5^{\circ} \times 2.5^{\circ}$	5,215,104
KDD CUP 2018	6	8	8736	$0.0167^{\circ} \times 0.0175^{\circ}$	96096

(a) Scatter (b) Regular Cluster (c) Irregular Cluster

		HadCRUT							СМАР					
Method	Sca	Scatter		Reg Cluster		Irr Cluster		Scatter		Reg Cluster		Irr Cluster		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
Zero	1.0396	0.6638	0.8551	0.5983	0.7446	0.5879	1.0290	0.6830	1.2861	0.7620	1.2869	0.7390		
Mean	0.9697	0.6375	0.7985	0.5744	0.6971	0.5677	1.0272	0.6804	1.3294	0.7548	1.2969	0.7364		
sKNN	0.3756	0.3991	0.4645	0.4649	0.3791	0.4210	0.1120	0.1785	0.7159	0.4863	0.4888	0.3960		
IDW	0.3524	0.3868	0.4440	0.4535	0.3596	0.4087	0.1042	0.1719	0.7036	0.4792	0.4658	0.3839		
Kriging	0.9517	0.6308	0.7995	0.5767	0.6906	0.5703	0.8838	0.5863	0.9709	0.6279	1.1257	0.6545		
MF	0.6181	0.5216	0.7669	0.5782	0.6111	0.5390	0.1721	0.2395	0.8583	0.5753	0.5942	0.4974		
BTTF	0.5867	0.5225	0.6798	0.5553	0.5764	0.5332	0.2474	0.3137	0.9423	0.6237	0.5723	0.5154		
ST-MVL	0.3648	0.3964	0.4710	0.4655	0.3581	0.4084	0.1162	0.1832	0.7202	0.4919	0.5039	0.4177		
IGKNN	0.7214	0.5492	0.7212	0.5501	0.6405	0.5491	0.8474	0.6132	1.1710	0.7285	1.1254	0.7170		
NAOMI	1.0391	0.6637	0.8550	0.5983	0.7442	0.5877	1.0288	0.6833	1.2859	0.7620	1.2863	0.7396		
PConv	0.3908	0.4211	0.4759	0.4784	0.4122	0.4494	0.1008	0.1704	0.6469	0.4492	0.2969	0.3024		
3DGated	0.3610	0.3907	0.4265	0.4454	0.3581	0.4066	0.1400	0.2071	0.5532	0.4381	0.2952	0.3033		
ESC-GAN	0.3354	0.3800	0.4097	0.4295	0.3418	0.3971	0.0802	0.1531	0.5441	0.4308	0.2739	0.3017		

			HadC	CRUT		СМАР							
Method	Sca	Scatter		Reg Cluster		Irr Cluster		Scatter		Reg Cluster		Irr Cluster	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
Zero	1.0396	0.6638	0.8551	0.5983	0.7446	0.5879	1.0290	0.6830	1.2861	0.7620	1.2869	0.7390	
Mean	0.9697	0.6375	0.7985	0.5744	0.6971	0.5677	1.0272	0.6804	1.3294	0.7548	1.2969	0.7364	
sKNN	0.3756	0.3991	0.4645	0.4649	0.3791	0.4210	0.1120	0.1785	0.7159	0.4863	0.4888	0.3960	
IDW	0.3524	0.3868	0.4440	0.4535	0.3596	0.4087	0.1042	0.1719	0.7036	0.4792	0.4658	0.3839	
Kriging	0.9517	0.6308	0.7995	0.5767	0.6906	0.5703	0.8838	0.5863	0.9709	0.6279	1.1257	0.6545	
MF	0.6181	0.5216	0.7669	0.5782	0.6111	0.5390	0.1721	0.2395	0.8583	0.5753	0.5942	0.4974	
BTTF	0.5867	0.5225	0.6798	0.5553	0.5764	0.5332	0.2474	0.3137	0.9423	0.6237	0.5723	0.5154	
ST-MVL	0.3648	0.3964	0.4710	0.4655	0.3581	0.4084	0.1162	0.1832	0.7202	0.4919	0.5039	0.4177	
IGKNN	0.7214	0.5492	0.7212	0.5501	0.6405	0.5491	0.8474	0.6132	1.1710	0.7285	1.1254	0.7170	
NAOMI	1.0391	0.6637	0.8550	0.5983	0.7442	0.5877	1.0288	0.6833	1.2859	0.7620	1.2863	0.7396	
PConv	0.3908	0.4211	0.4759	0.4784	0.4122	0.4494	0.1008	0.1704	0.6469	0.4492	0.2969	0.3024	
3DGated	0.3610	0.3907	0.4265	0.4454	0.3581	0.4066	0.1400	0.2071	0.5532	0.4381	0.2952	0.3033	
ESC-GAN	0.3354	0.3800	0.4097	0.4295	0.3418	0.3971	0.0802	0.1531	0.5441	0.4308	0.2739	0.3017	

			HadC	CRUT			СМАР					
Method	Sca	tter	Reg C	Cluster Irr Cl		luster	uster Scatter		Reg Cluster		Irr Cluster	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Zero	1.0396	0.6638	0.8551	0.5983	0.7446	0.5879	1.0290	0.6830	1.2861	0.7620	1.2869	0.7390
Mean	0.9697	0.6375	0.7985	0.5744	0.6971	0.5677	1.0272	0.6804	1.3294	0.7548	1.2969	0.7364
sKNN	0.3756	0.3991	0.4645	0.4649	0.3791	0.4210	0.1120	0.1785	0.7159	0.4863	0.4888	0.3960
IDW	0.3524	0.3868	0.4440	0.4535	0.3596	0.4087	0.1042	0.1719	0.7036	0.4792	0.4658	0.3839
Kriging	0.9517	0.6308	0.7995	0.5767	0.6906	0.5703	0.8838	0.5863	0.9709	0.6279	1.1257	0.6545
MF	0.6181	0.5216	0.7669	0.5782	0.6111	0.5390	0.1721	0.2395	0.8583	0.5753	0.5942	0.4974
BTTF	0.5867	0.5225	0.6798	0.5553	0.5764	0.5332	0.2474	0.3137	0.9423	0.6237	0.5723	0.5154
ST-MVL	0.3648	0.3964	0.4710	0.4655	0.3581	0.4084	0.1162	0.1832	0.7202	0.4919	0.5039	0.4177
IGKNN	0.7214	0.5492	0.7212	0.5501	0.6405	0.5491	0.8474	0.6132	1.1710	0.7285	1.1254	0.7170
NAOMI	1.0391	0.6637	0.8550	0.5983	0.7442	0.5877	1.0288	0.6833	1.2859	0.7620	1.2863	0.7396
PConv	0.3908	0.4211	0.4759	0.4784	0.4122	0.4494	0.1008	0.1704	0.6469	0.4492	0.2969	0.3024
3DGated	0.3610	0.3907	0.4265	0.4454	0.3581	0.4066	0.1400	0.2071	0.5532	0.4381	0.2952	0.3033
ESC-GAN	0.3354	0.3800	0.4097	0.4295	0.3418	0.3971	0.0802	0.1531	0.5441	0.4308	0.2739	0.3017

			HadC	CRUT		СМАР						
Method	Sca	tter	Reg C	luster Irr Cl		luster	ister Scatter		Reg Cluster		Irr Cluster	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Zero	1.0396	0.6638	0.8551	0.5983	0.7446	0.5879	1.0290	0.6830	1.2861	0.7620	1.2869	0.7390
Mean	0.9697	0.6375	0.7985	0.5744	0.6971	0.5677	1.0272	0.6804	1.3294	0.7548	1.2969	0.7364
sKNN	0.3756	0.3991	0.4645	0.4649	0.3791	0.4210	0.1120	0.1785	0.7159	0.4863	0.4888	0.3960
IDW	0.3524	0.3868	0.4440	0.4535	0.3596	0.4087	0.1042	0.1719	0.7036	0.4792	0.4658	0.3839
Kriging	0.9517	0.6308	0.7995	0.5767	0.6906	0.5703	0.8838	0.5863	0.9709	0.6279	1.1257	0.6545
MF	0.6181	0.5216	0.7669	0.5782	0.6111	0.5390	0.1721	0.2395	0.8583	0.5753	0.5942	0.4974
BTTF	0.5867	0.5225	0.6798	0.5553	0.5764	0.5332	0.2474	0.3137	0.9423	0.6237	0.5723	0.5154
ST-MVL	0.3648	0.3964	0.4710	0.4655	0.3581	0.4084	0.1162	0.1832	0.7202	0.4919	0.5039	0.4177
IGKNN	0.7214	0.5492	0.7212	0.5501	0.6405	0.5491	0.8474	0.6132	1.1710	0.7285	1.1254	0.7170
NAOMI	1.0391	0.6637	0.8550	0.5983	0.7442	0.5877	1.0288	0.6833	1.2859	0.7620	1.2863	0.7396
PConv	0.3908	0.4211	0.4759	0.4784	0.4122	0.4494	0.1008	0.1704	0.6469	0.4492	0.2969	0.3024
3DGated	0.3610	0.3907	0.4265	0.4454	0.3581	0.4066	0.1400	0.2071	0.5532	0.4381	0.2952	0.3033
ESC-GAN	0.3354	0.3800	0.4097	0.4295	0.3418	0.3971	0.0802	0.1531	0.5441	0.4308	0.2739	0.3017

Qualitative Results

Numbers above figures are Mean Square Errors

Ablation & Visualization

Method	Sca	tter	Reg C	Cluster	Irr Cluster		
	MSE	MAE	MSE	MAE	MSE	MAE	
ESC-GAN-vanilla	0.0825	0.1557	0.5874	0.4433	0.2900	0.3099	
ESC-GAN-local	0.0818	0.1545	0.5848	0.4362	0.2785	0.3032	
ESC-GAN-single	0.0842	0.1588	0.5814	0.4388	0.2880	0.3107	
ESC-GAN	0.0802	0.1531	0.5441	0.4308	0.2739	0.3017	

(a) Dot Product GT (b) Cosine GT (c) ESC-GAN

Robustness to Missing Patterns

(a) Ocean (b) High-altitude (c) High-vegetation

Method	Oc	Ocean High-altitude High-ve		n High-altitude H		getation	
	MSE	MAE	MSE	MAE	MSE	MAE	
sKNN	0.3162	0.3160	0.0865	0.1428	0.1857	0.2178	
IDW	0.2738	0.2929	0.0786	0.1335	0.1687	0.2060	
ST-MVL	0.2855	0.2972	0.0784	0.1347	0.1710	0.2061	
PConv	0.2174	0.2517	0.0743	0.1303	0.1588	0.2004	
3DGated	0.2989	0.3093	0.1231	0.1878	0.2254	0.2644	
ESC-GAN	0.1929	0.2512	0.0663	0.1234	0.1399	0.1911	

Robustness to Missing Ratios

Generalization to Random Missing

%Missing	20%	30%	40%	50%	60%	70%	80%	90%
Last	1.073	0.894	0.901	0.990	1.040	1.236	1.689	2.870
Mean	0.916	0.907	0.914	0.923	0.973	0.935	0.937	1.002
KNN	0.892	0.803	0.776	0.798	0.856	0.852	0.873	1.243
MF	0.850	0.785	0.787	0.772	0.834	0.805	0.860	1.196
MTSI	0.844	0.780	0.753	0.743	0.803	0.780	0.837	1.018
BRITS	0.455	0.421	0.372	0.409	0.440	0.482	0.648	0.725
DCRNN	0.579	0.565	0.449	0.506	0.589	0.622	0.720	0.861
CDSA	0.373	0.393	0.287	0.291	0.387	0.495	0.521	0.631
ESC-GAN	0.207	0.229	0.232	0.231	0.274	0.299	0.326	0.434

Outline

- Motivation
- Method
- Experiments
- Conclusion

Conclusion

- Extending Spatial Coverage (ESC) of sensory data to locations without historical values
- How to address challenges in ESC task?
 - Local and global context
 - Structure across multiple scales
 - Adversarial training
- Extensive experiments on geo-sensory datasets demonstrate state-of-the-art performance^{1, 2}
- <u>https://xiyuanzh.github.io/assets/publications/WSDM22_ESC_GAN.pdf</u>
 <u>https://github.com/xiyuanzh/ESC-GAN</u>

Thanks!

Q&A