

Large Language Models for Time Series: A Survey

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, Jingbo Shang University of California, San Diego

Introduction

- LLMs have significantly revolutionized NLP and CV domains.
- How can LLMs benefit time series analysis? \bullet

Multiple Tasks **Diverse Domains**

- Aligning (Embedding Stage)
 - Similarity matching
 - LLMs as backbones

ieries der Similarity

	品				
Forecasting	Classification	Interpolation EEG	Finance	Table	ECG
			Ŷ		
Anomaly Detection	Text Generation	Time Series Generation Traffic	Audio	loT	Robotics

- Key challenge
 - How to bridge the modality gap between LLMs trained on *discrete textual data* and *continuous numerical time series*?

Taxonomy

- If we outline typical LLM-driven NLP pipelines in five stages
 - Input text, tokenization, embedding, LLM, output
- Then each category of our taxonomy targets one specific stage in this pipeline

Prompting (Input Stage) \bullet

- Number-agnostic tokenization
- Number-specific tokenization

Method	Example
PromptCast [Xue and Salim, 2022]	"From $\{t_1\}$ to $\{t_{obs}\}$, the average temperature of region $\{U_m\}$ was $\{x_t^m\}$ degree on each day. What is the temperature going to be on $\{t_{obs}\}$?"
Liu et al. [2023d]	"Classify the following accelerometer data in meters per second squared as either walking or running: 0.052,0.052,0.052,0.051,0.052,0.051,0.056,0.06,0.064"
TabLLM [Hegselmann et al., 2023]	"The person is 42 years old and has a Master's degree. She gained \$594. Does this person earn more than 50000 dollars? Yes or no? Answer:"
LLMTime [Gruver et al., 2023]	" $(0.123, 1.23, 12.3, 123.0" \rightarrow "12, 123, 1230, 12300"$

• Vision as Bridge (LLM Stage)

- Paired data, physics relationships, time series plots as images \bullet
- LLMs as Tools (Output Stage)
 - Code, API call, text domain knowledge

Comparison within the Taxonomy

Method	Subcategory	Representative Works	Equations	Advantages	Limitations
Dromoting	Number-Agnostic	PromptCast [Xue and Salim, 2022]	$\mathbf{y} = f_{\mathbf{x}}(\mathbf{y} \cdot \mathbf{y})$	easy to implement;	lose semantics;
Prompting -	Number-Specific	LLMTime [Gruver et al., 2023]	$\mathbf{y} = f_{\theta}(\mathbf{x}_s, \mathbf{x}_t)$	zero-shot capability	not efficient
	VQ-VAE	DeWave [Duan et al., 2023]	$k_i = \arg\min_j \ g_\phi(\mathbf{x}_s)_i - \mathbf{c}_j\ _2$	flexibility of	may require
Quantization	K-Means	AudioLM [Borsos et al., 2023]	$\mathbf{k} = [k_i]_{i=1}^{rac{T}{S}}, \mathbf{y} = f_ heta(\mathbf{k}, \mathbf{x}_t)$	index and time	two-stage
	Text Categories	TDML [Yu et al., 2023]	$\mathbf{y} = f_{\theta}(q(\mathbf{x}_s), \mathbf{x}_t)$	series conversion	training
Aligning	Similarity Match	ETP [Liu <i>et al.</i> , 2023a]	$\mathbf{y} = g_{\phi}(\mathbf{x}_s)$	align semantics of	complicated
		MATM [Han <i>et al.</i> , 2022]	$\mathcal{L} = \sin(g_{\phi}(\mathbf{x}_s), f_{\theta}(\mathbf{x}_t))$	different modalities;	design and
	LLM Backbone	GPT4TS [Zhou et al., 2023a]	$\mathbf{y} = f_{ heta}(g_{\phi}(\mathbf{x}_s),\mathbf{x}_t)$	end-to-end training	fine-tuning
Vision as	Paired Data	ImageBind [Girdhar et al., 2023]	$\mathcal{L} = \sin(g_{\phi}(\mathbf{x}_s), h_{\psi}(\mathbf{x}_v))$	additional visual	not hold
Bridge	TS Plots as Images	Wimmer and Rekabsaz [2023]	$\mathbf{y}=h_\psi(\mathbf{x}_s)$	knowledge	for all data
Tool -	Code	CTG++ [Zhong et al., 2023]	$z = f_{\theta}(\mathbf{x}_t)$	empower LLM	optimization
	API	ToolLLM [Qin <i>et al.</i> , 2023]	$\mathbf{y} = z(\mathbf{x}_s)$	with more abilities	not end-to-end

Datasets

• Internet of Things (IMU), healthcare (EEG, ECG), finance (stock), audio/music/speech

Quantization (Tokenization ullet

- Discrete indices from VQ-VAE
- **Discrete indices from K-Means**

Domain	Dataset	Size	Major Modalities	Task
Internet of Things	Ego4D ² [Grauman et al., 2022]	3,670h data, 3.85M narrations	text, IMU, video, audio, 3D	classification, forecasting
	DeepSQA ³ [Xing et al., 2021]	25h data, 91K questions	text, imu	classification, question answering
Finance -	PIXIU ⁴ [Xie <i>et al.</i> , 2023b]	136K instruction data	text, tables	5 NLP tasks, forecasting
	MoAT ⁵ [Lee <i>et al.</i> , 2023]	6 datasets, 2K timesteps in total	text, time series	forecasting
Healthcare	Zuco 2.0 ⁶ [Hollenstein <i>et al.</i> , 2019]	739 sentences	text, eye-tracking, EEG	classification, text generation
	PTB-XL ⁷ [Wagner et al., 2020]	60h data, 71 unique statements	text, ECG	classification
	ECG-QA ⁸ [Oh et al., 2023]	70 question templates	text, ECG	classification, question answering
Audio	OpenAQA-5M ⁹ [Gong et al., 2023]	5.6M (audio, question, answer) tuples	text, audio	tagging, classification
Music	MusicCaps ¹⁰ [Agostinelli et al., 2023]	5.5K music clips	text, music	captioning, generation
Speech	CommonVoice ¹¹ [Ardila <i>et al.</i> , 2019]	7,335 speech hours in 60 languages	text, speech	ASR, translation

• Check out our paper and Github repo (awesome-IImtime-series) for more details!

