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Introduction

• LLMs have significantly revolutionized NLP and CV domains.
• How can LLMs benefit time series analysis?

• Key challenge
• How to bridge the modality gap between LLMs trained on 

discrete textual data and continuous numerical time series?
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Taxonomy
• If we outline typical LLM-driven NLP pipelines in five stages
• Input text, tokenization, embedding, LLM, output

• Then each category of our taxonomy targets one specific 
stage in this pipeline

• Prompting (Input Stage)
• Number-agnostic tokenization
• Number-specific tokenization

• Quantization (Tokenization Stage)
• Discrete indices from VQ-VAE
• Discrete indices from K-Means
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• Aligning (Embedding Stage)
• Similarity matching
• LLMs as backbones

• Vision as Bridge (LLM Stage)
• Paired data, physics relationships, time series plots as images

• LLMs as Tools (Output Stage)
• Code, API call, text domain knowledge
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Datasets
• Internet of Things (IMU), healthcare (EEG, ECG), finance 

(stock), audio/music/speech

Comparison within the Taxonomy

Resources
• Check out our paper and 

Github repo (awesome-llm-
time-series) for more details! 

Paper Github

Table 1: Examples of representative direct prompting methods.

Method Example

PromptCast [Xue and Salim, 2022]
“From {t1} to {tobs}, the average temperature of region {Um} was {xm

t } degree on each day. What is the

temperature going to be on {tobs}?”

Liu et al. [2023d]
“Classify the following accelerometer data in meters per second squared as either walking or running:

0.052,0.052,0.052,0.051,0.052,0.055,0.051,0.056,0.06,0.064”

TabLLM [Hegselmann et al., 2023]
“The person is 42 years old and has a Master’s degree. She gained $594. Does this person earn more than

50000 dollars? Yes or no? Answer:”

LLMTime [Gruver et al., 2023] “0.123, 1.23, 12.3, 123.0” ! “1 2 , 1 2 3 , 1 2 3 0 , 1 2 3 0 0”

ing methods have been applied to forecast Place-of-Interest
(POI) customer flows (AuxMobLCast [Xue et al., 2022]), en-
ergy load [Xue and Salim, 2023], and user’s next location
(LLM-Mob [Wang et al., 2023b]). Liu et al. [2023d] prompt
PaLM-24B for health-related tasks such as activity recogni-
tion and daily stress estimate. TabLLM [Hegselmann et al.,
2023] prompts large language models with a serialization of
the tabular data to a natural-language string for few-shot and
zero-shot tabular data classification. Zhang et al. [2023f]
prompt large language models to detect anomalous behaviors
from mobility data. Xie et al. [2023a] extract historical price
features such as open, close, high, and low prices to prompt
ChatGPT in a zero-shot fashion.

Number-Specific Tokenization: More recently, LLM-
Time [Gruver et al., 2023] pointed out that Byte Pair Encod-
ing (BPE) tokenization has the limitation of breaking a sin-
gle number into tokens that don’t align with the digits, lead-
ing to inconsistent tokenization across different floating point
numbers and complicating arithmetic operations [Spathis and
Kawsar, 2023]. Therefore, following LLMs such as LLaMA
and PaLM, they propose to insert spaces between digits to en-
sure distinct tokenization of each digit and use a comma (“,”)
to separate each time step in a time series. They also scale
time series to optimize token usage and keep fixed precision
(e.g., two digits of precision) to efficiently manage context
length. Meanwhile, BloomberGPT [Wu et al., 2023] trains
on financial data with text and numerical data and places each
digit in its own chunk to better handle numbers. Using similar
space-prefixed tokenization, Mirchandani et al. [2023] show
that LLMs are general pattern machines capable of sequence
transformation, completion and improvement.

3.2 Quantization
Quantization based method [Rabanser et al., 2020] converts
numerical data into discrete representations as input to LLMs.
This approach can be further divided into two main categories
based on the discretization technique employed.

Discrete Indices from VQ-VAE: The first type of quan-
tization method transforms continuous time series into dis-
crete indices as tokens. Among them one of the most popular
methods is training a Vector Quantized-Variational AutoEn-
coder (VQ-VAE) [Van Den Oord et al., 2017], which learns
a codebook C = {ci}Ki=1 of K D-dimensional codewords
ci 2 RD to capture the latent representations, as illustrated
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(a) VQ-VAE based quantization method.
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(b) K-Means based quantization method.

Figure 3: Two types of index-based quantization methods.

in Figure 3a. The method identifies the nearest neighbor
ki of each step i of the encoded time series representation
g�(xs) 2 RT

S ⇥D in the codebook (S denotes the cumula-
tive stride of VQ-VAE encoder), and uses the corresponding
indices k as the quantized input to language models:

qi = cki , ki = argmin
j

kg�(xs)i � cjk2,k = [ki]
T
S
i=1. (1)

Based on VQ-VAE, Auto-TTE [Chung et al., 2023] quan-
tizes ECGs into discrete formats and generates 12-lead ECG
signals conditioned on text reports. DeWave [Duan et al.,
2023] adapts VQ-VAE to derive discrete codex encoding and
aligns it with pre-trained BART for open-vocabulary EEG-to-
text translation tasks. TOTEM [Talukder and Gkioxari, 2023]
also quantizes time series through VQ-VAE as input to Trans-
formers for multiple downstream applications such as fore-
casting, classification, and translation. In the audio domain,
UniAudio [Yang et al., 2023] tokenizes different types of tar-
get audio using Residual Vector Quantization (RVQ) [Zeghi-
dour et al., 2021] (a hierarchy of multiple vector quantizers)
and supports 11 audio generation tasks. VioLA [Wang et
al., 2023a] unifies various crossmodal tasks involving speech
and text by converting speech utterances to discrete tokens
through RVQ. AudioGen [Kreuk et al., 2022] learns discrete
audio representations using vector quantization layers and
generates audio samples conditioned on text inputs.

Discrete Indices from K-Means: Apart from employing
VQ-VAE, researchers have also explored K-Means cluster-

Table 2: Summary of five major categories of applying LLMs for time series analysis, including their respective subcategories, representative
works, mathematical formulations, advantages and limitations. q and xv represent text-based quantization process and image data.

Method Subcategory Representative Works Equations Advantages Limitations

Prompting
Number-Agnostic PromptCast [Xue and Salim, 2022]

y = f✓(xs,xt)
easy to implement; lose semantics;

Number-Specific LLMTime [Gruver et al., 2023] zero-shot capability not efficient

Quantization
VQ-VAE DeWave [Duan et al., 2023] ki = argminj kg�(xs)i � cjk2 flexibility of may require

K-Means AudioLM [Borsos et al., 2023] k = [ki]
T
S
i=1,y = f✓(k,xt) index and time two-stage

Text Categories TDML [Yu et al., 2023] y = f✓(q(xs),xt) series conversion training

Aligning
Similarity Match

ETP [Liu et al., 2023a] y = g�(xs) align semantics of complicated

MATM [Han et al., 2022] L = sim(g�(xs), f✓(xt)) different modalities; design and

LLM Backbone GPT4TS [Zhou et al., 2023a] y = f✓(g�(xs),xt) end-to-end training fine-tuning

Vision as Paired Data ImageBind [Girdhar et al., 2023] L = sim(g�(xs), h (xv)) additional visual not hold

Bridge TS Plots as Images Wimmer and Rekabsaz [2023] y = h (xs) knowledge for all data

Tool
Code CTG++ [Zhong et al., 2023] z = f✓(xt) empower LLM optimization

API ToolLLM [Qin et al., 2023] y = z(xs) with more abilities not end-to-end

dedicated encoders to embed speech (WavPrompt [Gao et
al., 2022], Speech LLaMA [Lakomkin et al., 2023])), music
(MU-LLaMA [Liu et al., 2023c]), and general audio inputs
(LTU [Gong et al., 2023], SALMONN [Tang et al., 2023]),
and feed the embeddings to large language models.

3.4 Vision as Bridge
Time series data can be effectively interpreted or associated
with visual representations, which align closer with textual
data and have demonstrated successful integrations with large
language models. Therefore, researchers have also leveraged
vision modality as a bridge to connect time series with LLMs.

Paired Data: ImageBind [Girdhar et al., 2023] uses
image-paired data to bind six modalities (images, text, audio,
depth, thermal, and Inertial Measurement Unit (IMU) time
series) and learn a joint embedding space, enabling new emer-
gent capabilities. PandaGPT [Su et al., 2023] further com-
bines the multimodal encoders from ImageBind and LLMs
to enable visual and auditory instruction-following capabili-
ties. IMU2CLIP [Moon et al., 2022] aligns IMU time series
with video and text, by projecting them into the joint repre-
sentation space of Contrastive Language-Image Pre-training
(CLIP) [Radford et al., 2021]. AnyMAL [Moon et al., 2023]
builds upon IMU2CLIP by training a lightweight adapter to
project the IMU embeddings into the text token embedding
space of LLaMA-2-70B. It is also capable of transforming
data from other modalities, such as images, videos, audio,
into the same text embedding space.

Physics Relationships: IMUGPT [Leng et al., 2023] gen-
erates IMU data from ChatGPT-augmented text descriptions.
It first generates 3D human motion from text using pre-
trained motion synthesis model T2M-GPT [Zhang et al.,
2023b]. Then it derives IMU data from 3D motion based on
physics relationships of motion kinetics.

Time Series Plots as Images: CLIP-LSTM [Wimmer and
Rekabsaz, 2023] transforms stock market data into sequences

of texts and images of price charts, and leverages pre-trained
CLIP vision-language model to generate features for down-
stream forecasting. Insight Miner [Zhang et al., 2023e] con-
verts time series windows into images using lineplot, and
feeds images into vision language model LLaVA [Liu et al.,
2023b] to generate time series trend descriptions.

3.5 Tool

This type of method does not directly use large language
models to process time series. Instead, it applies large lan-
guage models to generate indirect tools z(·), such as code
and API calls, to benefit time series related tasks.

Code: CTG++ [Zhong et al., 2023] applies GPT-4 to gen-
erate differentiable loss functions in a code format from text
descriptions to guide the diffusion model to generate traffic
trajectories. With this two-step translation, the LLM and dif-
fusion model efficiently bridge the gap between user intent
and traffic simulation.

API Call: ToolLLM [Qin et al., 2023] introduces a general
tool-use framework composed of data construction, model
training, and evaluation. This framework includes API calls
for time series tasks such as weather and stock forecasting.

Text Domain Knowledge: SHARE [Zhang et al., 2023d]
exploits the shared structures in human activity label names
and proposes a sequence-to-sequence structure to generate la-
bel names as token sequences to preserve the shared label
structures. It applies GPT-4 to augment semantics of label
names. GG-LLM [Graule and Isler, 2023] leverages LLaMA-
2 to encode world knowledge of common human behavioral
patterns to predict human actions without further training.
SCRL-LG [Ding et al., 2023] leverages LLaMA-7B as stock
feature selectors to extract meaningful representations from
news headlines, which are subsequently employed in rein-
forcement learning for precise feature alignments.

Table 3: Summary of representative time series and text multimodal datasets.

Domain Dataset Size Major Modalities Task

Internet of Things
Ego4D2 [Grauman et al., 2022] 3, 670h data, 3.85M narrations text, IMU, video, audio, 3D classification, forecasting

DeepSQA3 [Xing et al., 2021] 25h data, 91K questions text, imu classification, question answering

Finance
PIXIU4 [Xie et al., 2023b] 136K instruction data text, tables 5 NLP tasks, forecasting

MoAT5 [Lee et al., 2023] 6 datasets, 2K timesteps in total text, time series forecasting

Healthcare
Zuco 2.06 [Hollenstein et al., 2019] 739 sentences text, eye-tracking, EEG classification, text generation

PTB-XL7 [Wagner et al., 2020] 60h data, 71 unique statements text, ECG classification

ECG-QA8 [Oh et al., 2023] 70 question templates text, ECG classification, question answering

Audio OpenAQA-5M9 [Gong et al., 2023] 5.6M (audio, question, answer) tuples text, audio tagging, classification

Music MusicCaps10 [Agostinelli et al., 2023] 5.5K music clips text, music captioning, generation

Speech CommonVoice11 [Ardila et al., 2019] 7, 335 speech hours in 60 languages text, speech ASR, translation

4 Comparison within the Taxonomy
We compare the five categories of our taxonomy and pro-
vide general guidelines for which category to choose based
on considerations of data, model, efficiency and optimization.

Data: When no training data is available and the objec-
tive is to apply LLM for time series in an zero-shot fashion,
it is preferable to use prompting-based methods. This is be-
cause direct prompting enables the utilization of pre-trained
language models’ inherent capabilities without fine-tuning.
However, representing numbers as strings can diminish the
semantic value intrinsically tied to numerical data. There-
fore, with adequate training data, quantization or aligning-
based methods become more advantageous. As shown in Fig-
ure 2, these two categories are the most extensively studied
ones in existing literature. Furthermore, if time series data
can be interpreted or associated with visual representations,
these representations can be incorporated to utilize the intrin-
sic knowledge embedded in the vision modality or pre-trained
vision-language models.

Model: Prompting and tool integration methods tend to
apply billion-parameter models as they often apply off-the-
self LLMs without architectural modifications. By con-
trast, aligning and quantization methods vary from million
to billion-parameter models, depending on the specific appli-
cation requirements and available computational resources.

Efficiency: Prompting-based methods are not efficient for
numerical data with high precision, as well as multivariate
time series as it requires transforming each dimension into
separate univariate time series, resulting in extremely long in-
put. They are also less efficient for long-term predictions due
to the computational demands of generating long sequences.
These methods are more effective when dealing with simple
numerical data that is richly interwoven with textual infor-
mation, such as opening and closing stock prices in financial
news articles. By contrast, quantization and aligning meth-
ods are more efficient to handle long sequences, as time series
are typically down-sampled or segmented into patches before
feeding into large language models.

Optimization: Depending on the specific discretization
technique, quantization based method may require a two-
stage training process (such as first training the VQ-VAE

model), which may result in sub-optimal performance com-
pared with that achieved through end-to-end training in align-
ing methods. Using large language models as indirect tools
empowers LLMs with more capabilities to manage numeri-
cal data, but also raises the level of complexity to optimize
both LLMs and other components in an end-to-end fashion.
Therefore, existing works of tool integration typically employ
off-the-shelf LLMs without further fine-tuning.

5 Multimodal Datasets
Applying LLMs for time series benefits from the availabil-
ity of multimodal time series and text data. In this section,
we introduce representative multimodal time series and text
datasets organized by their respective domains (Table 3). We
list additional multimodal datasets in our Github repository12.
Internet of Things (IoT): Human activity recognition is an
important task in IoT domain, which identifies human activi-
ties given time series collected with IoT devices (such as IMU
sensors). The corresponding text data are the labels or text de-
scriptions of these activities. Ego4D [Grauman et al., 2022]
presents 3,670 hours of daily-life activity data across hun-
dreds of scenarios, including household, outdoor, workplace,
and leisure. The dataset is rich in modalities, including the
IMU time series measurement, and dense temporally-aligned
textual descriptions of the activities and object interactions,
totaling 3.85 million sentences. Ego-Exo4D [Grauman et
al., 2023] further offers three kinds of paired natural lan-
guage datasets including expert commentary, narrate-and-act
descriptions provided by the participants, and atomic action

2https://ego4d-data.org/
3https://github.com/nesl/DeepSQA
4https://github.com/chancefocus/PIXIU
5https://openreview.net/pdf?id=uRXxnoqDHH
6https://osf.io/2urht/
7https://physionet.org/content/ptb-xl/1.0.3/
8https://github.com/Jwoo5/ecg-qa
9https://github.com/YuanGongND/ltu

10https://www.kaggle.com/datasets/googleai/musiccaps
11https://commonvoice.mozilla.org/en/datasets
12https://github.com/xiyuanzh/awesome-llm-time-series
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