# First De-Trend then Attend: Rethinking Attention for Time-Series Forecasting

Xiyuan Zhang<sup>1</sup>, Xiaoyong Jin<sup>2</sup>, Karthick Gopalswamy<sup>2</sup>, Gaurav Gupta<sup>2</sup>, Youngsuk Park<sup>2</sup>, Xingjian Shi<sup>3</sup>, Hao Wang<sup>2</sup>, Danielle C. Maddix<sup>2</sup>, Yuyang Wang<sup>2</sup>

<sup>1</sup>UC San Diego <sup>2</sup>AWS AI Labs <sup>3</sup>AWS



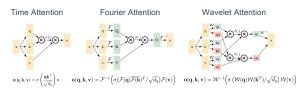
## Motivation

Attentions models [1] achieve promising performance for time-series forecasting. Recent works [2] explore learning attention in different domains (time, Fourier, wavelet domain).

We hope to investigate: Does learning attention in one domain offer better representation ability or empirical advantages than the other?

- Theoretically understand their relationships: Linear Equivalence
- · Empirically analyze their separate advantages: Investigation on the Role of Softmax
- · Combine empirical advantages for a better forecasting model: Our Method: TDformer

## Attention Formulation



## Linear Equivalence

Simplified assumptions without considering softmax

Time Attention:

$$\mathbf{o}(\mathbf{q}, \mathbf{k}, \mathbf{v}) = \mathbf{q} \mathbf{k}^T \mathbf{v}$$

Fourier Attention:

Fourier matrix has property  $\mathbf{W}^{-1} = \mathbf{W}^H, \mathbf{W}^T = \mathbf{W}$ 

$$\mathbf{o}(\mathbf{q},\mathbf{k},\mathbf{v}) = \mathbf{W}^H[(\mathbf{W}\mathbf{q})\overline{(\mathbf{W}\mathbf{k})}^T(\mathbf{W}\mathbf{v})] = \mathbf{q}\mathbf{k}^T\mathbf{v}$$

Wavelet Attention:

Wavelet matrix has property  $\mathbf{W}^T = \mathbf{W}^{-1}$ 

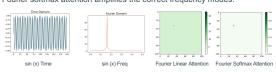
$$\mathbf{o}(\mathbf{q}, \mathbf{k}, \mathbf{v}) = \mathbf{W}^{-1}[(\mathbf{W}\mathbf{q})(\mathbf{W}\mathbf{k})^T(\mathbf{W}\mathbf{v})] = \mathbf{q}\mathbf{k}^T\mathbf{v}$$

Time, Fourier and wavelet attention are equivalent under linear assumptions.

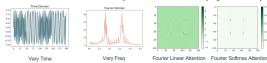
# Investigation on the Role of Softmax

Softmax with exponential terms has the "polarization" effect: increasing the gap between large and small values

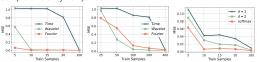
Data with fixed seasonality: Fourier attention is the most sample-efficient, as Fourier softmax attention amplifies the correct frequency modes.



Data with varying seasonality: wavelet attention is the most effective, as wavelet softmax attention amplifies dominant frequencies, as well as keep the small-value modes that convey the information of varying seasonality.

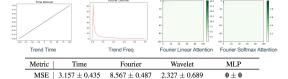


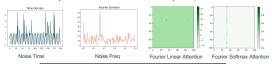
#### Sample efficiency comparison



Attention Models on sin (x) Attention Models on Varying Seasonality Softmax vs Polynomial Kernels on sin (x)

Data with trend: all attention models show inferior generalizability, especially Fourier softmax attention, as it incorrectly emphasizes low frequencies.





| Metric | Time              | Fourier                             | Wavelet           |  |  |  |
|--------|-------------------|-------------------------------------|-------------------|--|--|--|
| MSE    | $0.303 \pm 0.002$ | $\textbf{0.019} \pm \textbf{0.003}$ | $0.030 \pm 0.008$ |  |  |  |
| MAE    | $0.495 \pm 0.001$ | $0.111 \pm 0.010$                   | $0.137 \pm 0.021$ |  |  |  |

Consistent results on real-world seasonal and trend data

| Method  | Metric |       | Tra   | ffic  |       | Weather |       |       |       |  |  |
|---------|--------|-------|-------|-------|-------|---------|-------|-------|-------|--|--|
|         |        | 96    | 192   | 336   | 720   | 96-     | 192   | 336   | 720   |  |  |
| Time    | MSE    | 0.659 | 0.671 | 0.691 | 0.691 | 0.332   | 0.556 | 0.743 | 0.888 |  |  |
|         | MAE    | 0.358 | 0.358 | 0.368 | 0.363 | 0.395   | 0.533 | 0.622 | 0.702 |  |  |
| Fourier | MSE    | 0.631 | 0.629 | 0.655 | 0.667 | 0.774   | 0.743 | 0.833 | 1.106 |  |  |
|         | MAE    | 0.338 | 0.336 | 0.345 | 0.350 | 0.648   | 0.632 | 0.659 | 0.769 |  |  |
| Wavelet | MSE    | 0.622 | 0.629 | 0.640 | 0.655 | 0.358   | 0.564 | 0.815 | 1.312 |  |  |
|         | MAE    | 0.337 | 0.334 | 0.338 | 0.346 | 0.413   | 0.535 | 0.664 | 0.841 |  |  |

## Our Method: TDformer

Our model design: TDformer



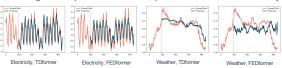
Forecasting results on benchmark multivariate time-series data

| Me          | thods      | TDf            | ormer | Non-s | tat TF | FEDI  | ormer | Auto  | ormer | Info  | rmer  | Log   | Frans | Refe  | rmer  |
|-------------|------------|----------------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| M           | etric      | MSE            | MAE   | MSE   | MAE    | MSE   | MAE   | MSE   | MAE   | MSE   | MAE   | MSE   | MAE   | MSE   | MAE   |
| Electricity | 96         | 0.160          | 0.263 | 0.169 | 0.273  | 0.193 | 0.308 | 0.201 | 0.317 | 0.274 | 0.368 | 0.258 | 0.357 | 0.312 | 0.402 |
| - 19        | 192<br>336 | 0.172<br>0.186 | 0.275 | 0.182 | 0.286  | 0.201 | 0.315 | 0.222 | 0.334 | 0.296 | 0.386 | 0.266 | 0.368 | 0.348 | 0.433 |
| 2           |            |                |       |       |        |       |       |       |       |       |       |       |       |       |       |
| ш           | 720        | 0.215          | 0.313 | 0.222 | 0.32   | 0.246 | 0.355 | 0.254 | 0.361 | 0.373 | 0.439 | 0.283 | 0.376 | 0.340 | 0.420 |
| 80          | 96         | 0.089          | 0.208 | 0.111 | 0.237  | 0.148 | 0.278 | 0.197 | 0.323 | 0.847 | 0.752 | 0.968 | 0.812 | 1.065 | 0.829 |
| ä           | 192        | 0.183          | 0.305 | 0.219 | 0.335  | 0.271 | 0.380 | 0.300 | 0.369 | 1.204 | 0.895 | 1.040 | 0.851 | 1.188 | 0.906 |
| Exchange    | 336        | 0.353          | 0.429 | 0.421 | 0.476  | 0.460 | 0.500 | 0.509 | 0.524 | 1.672 | 1.036 | 1.659 | 1.081 | 1.357 | 0.976 |
| 函           | 720        | 0.932          | 0.725 | 1.092 | 0.769  | 1.195 | 0.841 | 1.447 | 0.941 | 2.478 | 1.310 | 1.941 | 1.127 | 1.510 | 1.016 |
|             | 96         | 0.545          | 0.320 | 0.612 | 0.338  | 0.587 | 0.366 | 0.613 | 0.388 | 0.719 | 0.391 | 0.684 | 0.384 | 0.732 | 0.423 |
| Traffic     | 192        | 0.571          | 0.329 | 0.613 | 0.340  | 0.604 | 0.373 | 0.616 | 0.382 | 0.696 | 0.379 | 0.685 | 0.390 | 0.733 | 0.420 |
| 2           | 336        | 0.589          | 0.331 | 0.618 | 0.328  | 0.621 | 0.383 | 0.622 | 0.337 | 0.777 | 0.420 | 0.733 | 0.408 | 0.742 | 0.420 |
|             | 720        | 0.606          | 0.337 | 0.653 | 0.355  | 0.626 | 0.382 | 0.660 | 0.408 | 0.864 | 0.472 | 0.717 | 0.396 | 0.755 | 0.423 |
| žt.         | 96         | 0.177          | 0.215 | 0.173 | 0.223  | 0.217 | 0.296 | 0.266 | 0.336 | 0.300 | 0.384 | 0.458 | 0.490 | 0.689 | 0.596 |
| Weather     | 192        | 0.224          | 0.257 | 0.245 | 0.285  | 0.276 | 0.336 | 0.307 | 0.367 | 0.598 | 0.544 | 0.658 | 0.589 | 0.752 | 0.638 |
| قِ          | 336        | 0.278          | 0.290 | 0.321 | 0.338  | 0.339 | 0.359 | 0.380 | 0.395 | 0.578 | 0.523 | 0.797 | 0.652 | 0.639 | 0.596 |
| >           | 720        | 0.368          | 0.351 | 0.414 | 0.410  | 0.403 | 0.428 | 0.419 | 0.428 | 1.059 | 0.741 | 0.869 | 0.675 | 1.130 | 0.792 |
| - 2         | 96         | 0.174          | 0.256 | 0.192 | 0.274  | 0.203 | 0.287 | 0.255 | 0.339 | 0.365 | 0.453 | 0.768 | 0.642 | 0.658 | 0.619 |
| ETTm2       | 192        | 0.243          | 0.302 | 0.280 | 0.339  | 0.269 | 0.328 | 0.281 | 0.340 | 0.533 | 0.563 | 0.989 | 0.757 | 1.078 | 0.827 |
| E .         | 336        | 0.308          | 0.344 | 0.334 | 0.361  | 0.325 | 0.366 | 0.339 | 0.372 | 1.363 | 0.887 | 1.334 | 0.872 | 1.549 | 0.972 |
| щ           | 720        | 0.400          | 0.400 | 0.417 | 0.413  | 0.421 | 0.415 | 0.422 | 0.419 | 3.379 | 1.338 | 3.048 | 1.328 | 2.631 | 1.242 |
|             |            |                |       |       |        |       |       |       |       |       |       |       |       |       |       |

Ablation study by changing the trend and seasonal modules

| Method                | Metric |       | Tra   | ffic  |       | Exchange |       |       |       |  |
|-----------------------|--------|-------|-------|-------|-------|----------|-------|-------|-------|--|
| Method                |        | 96    | 192   | 336   | 720   | 96       | 192   | 336   | 720   |  |
| TDformer              | MSE    | 0.545 | 0.571 | 0.589 | 0.606 | 0.089    | 0.183 | 0.353 | 0.932 |  |
| Diormer               | MAE    | 0.320 | 0.329 | 0.331 | 0.337 | 0.208    | 0.305 | 0.429 | 0.725 |  |
| TDformer-MLP-TA       | MSE    | 0.573 | 0.592 | 0.605 | 0.630 | 0.086    | 0.181 | 0.340 | 0.923 |  |
| I DIOIIICI-MLI-IA     | MAE    | 0.334 | 0.336 | 0.340 | 0.351 | 0.205    | 0.303 | 0.422 | 0.721 |  |
| TDformer-MLP-WA       | MSE    | 0.552 | 0.583 | 0.599 | 0.629 | 0.088    | 0.185 | 0.348 | 0.925 |  |
| I DIOIIICI-MLI - WA   | MAE    | 0.322 | 0.330 | 0.337 | 0.347 | 0.208    | 0.307 | 0.426 | 0.721 |  |
| TDformer-TA-FA        | MSE    | 0.590 | 0.590 | 0.617 | 0.642 | 0.242    | 0.349 | 0.629 | 0.908 |  |
| 1Dioinici-1A-17A      | MAE    | 0.338 | 0.336 | 0.349 | 0.357 | 0.327    | 0.419 | 0.558 | 0.720 |  |
| TDformer w/o RevIN    | MSE    | 0.577 | 0.595 | 0.607 | 0.636 | 0.093    | 0.201 | 0.392 | 1.042 |  |
| I Dioinici w/o Keviiv | MAE    | 0.320 | 0.325 | 0.328 | 0.339 | 0.222    | 0.330 | 0.474 | 0.763 |  |

TDformer generates predictions that better preserve the trend and seasonality



### Reference

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, £ukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017

[2] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting.

arXiv preprint arXiv:2201.12740, 2022.