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ABSTRACT

Time-series data contains temporal order information that can guide

representation learning for predictive end tasks (e.g., classification,

regression). Recently, there are some attempts to leverage such

order information to first pre-train time-series models by recon-

structing time-series values of randomly masked time segments,

followed by an end-task fine-tuning on the same dataset, demon-

strating improved end-task performance. However, this learning

paradigm decouples data reconstruction from the end task. We

argue that the representations learnt in this way are not informed

by the end task and may, therefore, be sub-optimal for the end-task

performance. In fact, the importance of different timestamps can

vary significantly in different end tasks. We believe that represen-

tations learnt by reconstructing important timestamps would be a

better strategy for improving end-task performance. In this work,

we propose TARNet
1
, Task-AwareReconstructionNetwork, a new

model using Transformers to learn task-aware data reconstruction

that augments end-task performance. Specifically, we design a data-

driven masking strategy that uses self-attention score distribution

from end-task training to sample timestamps deemed important

by the end task. Then, we mask out data at those timestamps and

reconstruct them, thereby making the reconstruction task-aware.

This reconstruction task is trained alternately with the end task at

every epoch, sharing parameters in a single model, allowing the

representation learnt through reconstruction to improve end-task

performance. Extensive experiments on tens of classification and

regression datasets show that TARNet significantly outperforms

state-of-the-art baseline models across all evaluation metrics.

CCS CONCEPTS

• Mathematics of computing→ Time series analysis; • Com-

puting methodologies→ Supervised learning by classifica-

tion; Supervised learning by regression.

1
Code is publicly available at https://github.com/ranakroychowdhury/TARNet
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1 INTRODUCTION

Time-series data has domain-specific structural properties encoded

in the temporal ordering of events. These intrinsic properties can

provide a rich source of supervision besides target labels, which the

state-of-the-art time-series models [2, 38] often neglect. Recently,

time-series Transformer [37] leveraged this unlabeled data to craft a

reconstruction task that masks time-series values of randomly cho-

sen time segments and reconstructs them. The pre-trained model

is then fine-tuned on an end task, by reusing the same data sam-

ples along with their labels, leading to improved performance over

exclusively doing supervised learning on the end task.

However, this data reconstruction task precedes fine-tuning as a

decoupled step, which means the representation learnt during re-

construction is not informed about the end task. Hence, such learnt

representation may not be fully leveraged to perform optimally on

the end task.

Depending on the end task, different properties of the given data

may be useful for different end tasks. For example, consider the

following end tasks using the same data collected from sensors in

a building: predict the level of energy consumption (high, medium,

low) and the occupancy status (occupied or not) of a room based

on outdoor temperature and humidity, and light intensity and 𝐶𝑂2

readings from a room. Energy consumption prediction task may

be highly correlated to times when temperature is high (air condi-

tioning stays on) or light intensity is high (lights are switched ON)

while occupancy status may correlate to timestamps when 𝐶𝑂2

level is high. Hence, depending on the end task, certain timestamps

in the data may be more important than others for that task.

Generic learnt representations typically result from decoupled

data reconstruction and end tasks. To optimize the performance for

an end task, we customize the learnt representation for the end task

in TARNet. We test and validate the hypothesis that a representa-

tion learnt by reconstructing data from timestamps important to

the end task will yield improved performance over reconstruction

https://github.com/ranakroychowdhury/TARNet
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539329
https://doi.org/10.1145/3534678.3539329
https://doi.org/10.1145/3534678.3539329
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Figure 1: TARNet Overview: (a) Task of interest / End Task,𝑇𝐸𝑁𝐷 : Data is mean-standardized, then passed through an Embedding

and a Positional Encoding layer (not shown for simplicity), followed by the N-layer Transformer Encoders and Fully Connected

(FC) Layer; (b) Data-driven Masking Strategy,𝑀 : For every time-series data, we collect attention maps generated by Transformer

Encoders in 𝑇𝐸𝑁𝐷 and then compute the set of important timestamps to be masked in task-aware reconstruction; and (c)

Task-aware Reconstruction, 𝑇𝑇𝐴𝑅 : Input data are masked at timestamps computed by 𝑀 and reconstructed. Transformer

Encoder parameters are shared between 𝑇𝐸𝑁𝐷 and 𝑇𝑇𝐴𝑅 , but the FC layers are different (highlighted by different colors).

on random time segments. Therefore, we design a data reconstruc-

tion task which masks data from those important timestamps and

reconstructs them. In the process, the model learns a task-specific

representation, resulting in improved end task performance.

Figure 1 shows TARNet’s learning process. Using a transformer

encoder [29] as the backbone model, we train for the end task

(Figure 1(a)) and the data reconstruction task (Figure 1(c)) alter-

nately on the same model. In order to compute the timestamps to

mask during data reconstruction, we design a data-driven masking

strategy (Figure 1(b)). It uses the self-attention score distribution

generated by transformer encoder during the end task training and

determines the set of timestamps to mask. Since the two tasks share

parameters, the representation learnt during reconstruction can be

effectively leveraged by the end task to improve performance.

We conducted experiments on 34 classification datasets from

UEA Archive [1], UCI Machine Learning Repository [10, 15]

and 6 regression datasets from Monash University, UEA, UCR

Time Series Regression Archive [27]. Time Series Transformer

(TST) [37], the current state-of-the-art for time-series, achieved the

best accuracy on 6 out of 10 datasets, when compared with 5 base-

lines. We compared TARNet with 14 state-of-the-art baselines and

it performed the best on 17 out of 34 datasets, being 2.7% higher in

average accuracy than TST, which now performs best on 7 datasets.

Similarly, TST achieved the lowest error on 3 out of 6 datasets

for regression when compared with 11 state-of-the-art baselines.

TARNet achieved the lowest error on 3 and 2
nd

lowest error on 2

datasets when compared with the same baselines, whereas TST now

achieves the lowest error on 2 and 2
nd

lowest error on 1 dataset. We

conducted case studies to show how TARNet’s data-driven mask-

ing strategy learns task-specific representations, consistent with

domain characteristics, thereby boosting end-task performance.

In summary, our main contributions are:

• We propose TARNet to learn task-aware reconstruction from

time-series data to augment end-task performance.

• Wedesign a data-drivenmasking strategy to determine important

timestamps to an end task and learn to reconstruct them.

• We evaluate TARNet on numerous real-world datasets to validate

and quantify its efficacy compared with state-of-the-art methods.

2 RELATEDWORK

2.1 Non-Deep Learning Methods

ROCKET [5] and MiniROCKET [6] recently produced state-of-the

art results for time-series. They learn features extracted by nu-

merous and various random convolutional kernels. Other relevant

directions include: (1) time series shapelet, (2) bag-of-patterns, and

(3) distance-based models. Baydogan et al. [3] introduced Sym-

bolic Representation to learn local relationships between different

dimensions. Shapelets [33] are short discriminative time series

sub-sequences, e.g. dynamic shapelets [23], efficient shapelets [16].

WEASEL-MUSE [24] utilizes bag of SFA (Symbolic Fourier Approx-

imation). Distance-based methods [8, 31] use distance metric to

measure similarity of a pair of time series. Among limitations of

these approaches are that they incorporate expert insights, consist

of large, heterogeneous ensembles of classifiers, scale poorly to

long time-series, and many apply to only uni-variate time-series.

TARNet can be applied to both uni- andmulti-variate time-series,

automatically extracts features, and handles long time-series.

2.2 Deep Learning Methods

Using labeled data. Fawaz et al. [12] summarize many neural

networks-based methods for time-series. Most neural networks-

based methods use some arrangement of LSTM, CNN or both

[18, 39]. Others use different components of neural models, e.g.,

learnable temporal pooling [19], correlative channel-aware learn-

able fusion [2], label-learning [22], attentional prototype network

[38], and shapelet embedding [20]. TARNet proposes a subsidiary

data reconstruction technique that utilizes knowledge from the end
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task to learn a task-specific data representation. Sharing parameters

of this reconstruction task with the end task in a single architecture

allows the learnt representation to improve end task performance.

Using both unlabeled and labeled data. Unsupervised repre-

sentation learning for time-series uses triplet loss with negative

sampling [14], hierarchical contrastive loss [36], temporal and con-

textual contrasting [11], local smoothness to define neighborhoods

in time [28], and reprogramming acoustic models [32]. TST [37]

first pre-trains a transformer model by an unsupervised objective;

masks out time-series values at random time segments from data

and reconstructs them. It then reuses the same training samples

to fine-tune the model on an end task. This gave improved perfor-

mance than using the data once to train a fully supervised model.

However, decoupling the data reconstruction from the end task

makes the representation learnt during reconstruction uninformed

about the end task. Depending on the end task, certain timestamps

in time-series data may be more important than others [21], which

the learnt representation ignores. TARNet aims to learn a task-

aware data reconstruction by masking important timestamps with

respect to the end task. Hence, the learnt representation is better

suited for improving end task performance than the representation

learnt from reconstructing randomly masked time segments.

3 TARNET

In Figure 1, we show a schematic diagram of TARNet common

across all considered tasks. In this section, we first present the

problem setting and base model architecture shared by the two

tasks. Then, we explain the end-task𝑇𝐸𝑁𝐷 (i.e., Figure 1(a)) and task-

aware reconstruction𝑇𝑇𝐴𝑅 (i.e, Figure 1(c)). Finally, we present our

data-drivenmasking strategy (i.e., Figure 1(b)) that uses information

from 𝑇𝐸𝑁𝐷 to decide which timestamps to mask for 𝑇𝑇𝐴𝑅 .

3.1 Problem Description and Notations

Each training sample X ∈ R𝑆×𝑁 denotes a multivariate time-series

of length 𝑆 and 𝑁 variables. Specifically, it comprises a sequence

of 𝑆 𝑁 -dimensional feature vectors, 𝑥𝑡 ∈ R𝑁 : X ∈ R𝑆×𝑁 . This
formulation also covers the uni-variate case when 𝑁 = 1. All the

training samples come together with a target label 𝑦, which is an

integer class id for a classification task or a real-valued number

for a regression task. The full training dataset is labeled, i.e. we do

not leverage any additional unlabeled data. Based on these training

samples, we build a model to predict the label 𝑦 of unseen data X.

3.2 Base Model

We opt to use Transformer Encoders [29] as the backbone model,

as we aim to develop a general framework to learn task-specific

reconstruction that can be applied for a multitude of tasks. An

architecture consisting of an encoder provides flexibility as it can

not only handle tasks like classification, regression, imputation, but

also handle generative tasks such as forecasting. One can plug in

a task of interest by replacing the Fully Connected (FC) Layer in

Figure 1(a) by task-specific layers (e.g., decoder for forecasting).

The feature vectors 𝑥𝑡 are first mean-standardized per variable di-

mension. Then 𝑥𝑡 is linearly projected onto a 𝐷-dimensional vector

space, where𝐷 is the dimension of the Transformer model sequence

element representations (typically called embedding dimension):

𝑢𝑡 = W𝑝𝑥𝑡 + 𝑏𝑝 , (1)

where W𝑝 ∈ R𝐷×𝑁 , 𝑏𝑝 ∈ R𝐷 are learnable parameters and 𝑢𝑡 ∈
R𝐷 , 𝑡 = 1, 2, ..., 𝑆 are the model input vectors. The Transformer is

a feed-forward architecture insensitive to the ordering of input.

Therefore, we add positional encoding to these input vectors in

order to make it aware of the sequential nature of the time series.

The resultant vectors become the queries, keys and values of the

self-attention layer in the encoder block. We pass data through

several layers of such Transformer encoder blocks. Then, we pass

the output values weighted by self-attention scores through a fully

connected feed-forward network.We refer the reader to the original

work [29] for a detailed description of the Transformer model.

3.3 End Task (𝑇𝐸𝑁𝐷 )

For clarity, we use classification and regression as example end

tasks here. Please note that TARNet can be easily extended to other

tasks such as anomaly detection and time-series forecasting, by

tweaking the FC Layer in Figure 1(a).

We modify the base model architecture presented in Section 3.2

for regression and classification in the following way:

The data fed to 𝑇𝐸𝑁𝐷 is not masked, as illustrated by the frozen

Masking Layer in Figure 1(a). The vector corresponding to the last

timestamp from Transformer Encoders 𝑧𝑡 ∈ R𝐷 is fed through 2

FC layers and 𝑅𝐸𝐿𝑈 activation (represented as 𝑓 ), with parameters

W𝐿1 ∈ R𝐾𝐸×𝐷 , 𝑏𝐿1 ∈ R𝐾𝐸 ,W𝐿2 ∈ R𝐾𝐸×𝐾𝐸 , 𝑏𝐿2 ∈ R𝐾𝐸 ,

followed by the output layer with parameters

W
𝑂
𝐸 ∈ R

𝐶×𝐾𝐸 , 𝑏𝑂𝐸 ∈ R
𝐶 ,

where 𝐾𝐸 is the feed-forward dimension of FC Layer for 𝑇𝐸𝑁𝐷 and

𝐶 is the number of classes for classification or number of scalars to

be estimated for regression (typically 𝐶 = 1):

𝑦̃ = W
𝑂
𝐸 𝑓 (W𝐿2 𝑓 (W𝐿1𝑧𝑡 + 𝑏𝐿1) + 𝑏𝐿2) + 𝑏𝑂𝐸 . (2)

For classification, predictions 𝑦 are passed through a softmax to

give probability distribution, 𝑝 , over𝐶 classes.We use cross-entropy

loss with categorical ground truth labels, L𝐸𝑁𝐷 =
∑𝐶
𝑖=1

𝑦𝑖𝑙𝑜𝑔(𝑝𝑖 ).
For regression, we use squared error, L𝐸𝑁𝐷 = ∥𝑦 − 𝑦∥2

2
.

3.4 Task-aware Reconstruction (𝑇𝑇𝐴𝑅)

Learning data representation through reconstruction has been ex-

plored in natural language processing [7] and time-series [37]. The

goal of 𝑇𝑇𝐴𝑅 , illustrated in Figure 1(c), is to learn a data representa-

tion by reconstructing the input data X after it has been appropri-

ately masked by the Data-driven Masking Strategy,𝑀 .

The role of TARNet’s masking strategy 𝑀 , elaborated in Sec-

tion 3.5, is to generate a new binary training data mask𝑚 ∈ R𝑆
for each training sample at every epoch. It is a boolean array with

⌊𝜇𝑆⌋ number of 1’s, where 𝜇 is a hyper-parameter 0 < 𝜇 < 1, to

select the timestamps to be masked from X for the reconstruction

task. Let𝑚𝑡 represent the value of𝑚 at timestamp 𝑡 . If𝑚𝑡 = 1 we

mask 𝑥𝑡 , otherwise we do not. Masking a particular timestamp, 𝑡 ,

involves replacing the 𝑁 -dimensional feature vector 𝑥𝑡 with zeros.

X passes through Transformer Encoder layers after being masked
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by𝑚. The final representation vectors Z ∈ R𝑆×𝐷 is fed through 2

FC layers and 𝑅𝐸𝐿𝑈 activation, with parameters

W𝐿3 ∈ R𝐾𝑅×𝐷 , 𝑏𝐿3 ∈ R𝐾𝑅 ,W𝐿4 ∈ R𝐾𝑅×𝐾𝑅 , 𝑏𝐿4 ∈ R𝐾𝑅 ,

followed by the output layer with parameters

W
𝑂
𝑅 ∈ R

𝑁×𝐾𝑅 , 𝑏𝑂𝑅 ∈ R
𝑁 ,

where 𝐾𝑅 is the feed-forward dimension of FC Layer for 𝑇𝑇𝐴𝑅 and

𝑁 is the number of variables:

X̃ = W
𝑂
𝑅 𝑓 (W𝐿4 𝑓 (W𝐿3𝑍 + 𝑏𝐿3) + 𝑏𝐿4) + 𝑏𝑂𝑅 . (3)

The label for this task is the raw input data X. To ensure accurate

reconstruction, we calculate Mean Square Error (MSE) between the

ground truth X and prediction X̃. We calculate the average MSE

loss for masked and unmasked part of the data as follows:

L𝑚𝑎𝑠𝑘𝑒𝑑 =
1

𝑁
∑𝑆

𝑡=1
𝑚𝑡

𝑆∑︁
𝑡=1

𝑚𝑡 ∥x̃𝑡 − x𝑡 ∥22, (4)

L𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 =
1

𝑁 (𝑆 −∑𝑆
𝑡=1

𝑚𝑡 )

𝑆∑︁
𝑡=1

(1 −𝑚𝑡 ) ∥x̃𝑡 − x𝑡 ∥22 . (5)

Unlike TST, which only considers MSE loss for reconstructing

the masked portion of the data, L𝑚𝑎𝑠𝑘𝑒𝑑 , we include loss incurred
for replicating the unmasked, observed portion of the input data,

L𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 , as well. Time-series data is auto-regressive with strong

correlation across time. Therefore, the ability to reconstruct the

masked data at a given timestamp depends on how effectively

the model learns to reconstruct the unmasked data and use that

as context to infer the masked data. Including the loss for the

unmasked data ensures its accurate reconstruction.

The combined reconstruction loss L𝑇𝐴𝑅 is a weighted sum of

L𝑚𝑎𝑠𝑘𝑒𝑑 and L𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 , given by

L𝑇𝐴𝑅 = 𝜆L𝑚𝑎𝑠𝑘𝑒𝑑 + (1 − 𝜆)L𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 , (6)

where 𝜆 is a hyper-parameter 0 < 𝜆 < 1 that controls the relative

weights between the two losses. It is advisable to keep 𝜆 > 0.5

because the masked timestamps are more important for the end

task than the unmasked ones.

With L𝐸𝑁𝐷 as the end task loss, the total loss becomes

L𝑇𝑜𝑡𝑎𝑙 = 𝜂L𝑇𝐴𝑅 + (1 − 𝜂)L𝐸𝑁𝐷 , (7)

where 𝜂 is a hyper-parameter (0 < 𝜂 < 1) that controls the relative

weights between the two task losses. We train 𝑇𝐸𝑁𝐷 and 𝑇𝑇𝐴𝑅
end-to-end alternately at every epoch, until convergence.

3.5 Data-driven Masking Strategy (𝑀)

Data reconstruction in Time-series Transformer [37] involves mask-

ing segment of time-series data at randomly chosen timestamps

and reconstructing them. However, different timestamps in the data

may have different levels of importance to the end task. Therefore,

we eschew random reconstruction of data in favor of a strategy

that uses end task characteristics. Specifically, we identify times-

tamps that the end task deemed important during learning. We

will then mask 𝑥𝑡 from X corresponding to those timestamps and

reconstruct them during𝑇𝑇𝐴𝑅 . We hypothesize that reconstructing

data at timestamps identified to be important by the end task will

generate a data representation that benefits the end task. This is

in contrast to a random masking based data reconstruction, which

does not consider any such information.

Algorithm 1 Training of TARNet

Input: X, 𝑦

Hyper-parameters: 𝜇, 𝛽 , 𝜆, 𝜂

Output:𝑀𝑜𝑑𝑒𝑙

1: 𝜎 initialized randomly

2: 𝑀𝑜𝑑𝑒𝑙 = TransformerEncoder()

3: while training do

4: 𝜎 ′ = top ⌊𝛽𝑆⌋ values from 𝜎

5: 𝑚 ∼ Randomly sample ⌊𝜇𝑆⌋ timestamps without replace-

ment from 𝜎 ′

6: X̃, 𝑦,A = 𝑀𝑜𝑑𝑒𝑙 .train(X,𝑚) # A← Self-Attention Scores

7: Compute L𝑇𝐴𝑅 (X̃,X, 𝜆) and L𝐸𝑁𝐷 (𝑦,𝑦)
8: L𝑇𝑜𝑡𝑎𝑙 = 𝜂L𝑇𝐴𝑅 + (1 − 𝜂)L𝐸𝑁𝐷
9: 𝜎 = add_and_normalize(A)

10: end while

11: return𝑀𝑜𝑑𝑒𝑙

To define the notion of an “important” timestamp, we use self-

attention weights generated by Transformer Encoder in the forward

pass of𝑇𝐸𝑁𝐷 . Attention weights indicate how much weight should

be assigned to each 𝑥𝑡 to compute representation for a given 𝑥𝑡 .

We compute aggregate attention map A ∈ R𝑆×𝑆 by summing the

attention maps generated by each layer of Transformer Encoder.

Let A𝑖𝑘 be the attention weight assigned to 𝑥𝑘 during update of

𝑥𝑖 , where 𝑖 = 𝑘 = 1, 2, ..., 𝑆 , and
∑𝑆
𝑘=1

A𝑖𝑘 = 1 for all 𝑖 . Therefore,

the update to 𝑥𝑖 is a weighted sum of 𝑥1,2,...,𝑆 , where the weights

are A𝑖,𝑘=1,2,...𝑆 . We compute 𝜎 ∈ R𝑆 , where 𝜎𝑘 =

∑𝑆
𝑖=1

A𝑖𝑘∑𝑆
𝑘=1

∑𝑆
𝑖=1

A𝑖𝑘

for 𝑘 = 1, 2, ..., 𝑆 . 𝜎𝑘 represents the normalized aggregate attention

weight of timestamp 𝑘 to the computation of 𝑥1, 𝑥2, ..., 𝑥𝑆 . We define

the importance of each timestamp by its magnitude in 𝜎 , i.e. the

higher 𝜎𝑘 is, the more important timestamp 𝑘 is for 𝑇𝐸𝑁𝐷 .

We then select the timestamps corresponding to the top ⌊𝜇𝑆⌋
values in 𝜎 and mask them from X for reconstruction. Since the

same training data is fed at every epoch, the set of important times-

tamps computed from a given sample will not vary across epochs.

Hence, the model may memorize reconstructing a few selected

timestamps from the sample, leading to overfitting. Considering
the heterogeneity in time-series data due to irregular sampling fre-

quency or uncertainty about feature availability, it is probable that

real-world data may have a different set of important timestamps

compared to those seen in training data. Therefore, not exploring

enough timestamps to approximate the training data distribution

may lead to poor generalization on the real-world data.

Hence, we ensure that for every sample, at each epoch the model

explores a random set of timestamps among those that are impor-

tant. Therefore, we introduce an attention regularization parameter,

𝛽 , where 𝛽 > 𝜇 and 0 < 𝛽 < 1. We, therefore, compute set 𝜎 ′ to
choose the top ⌊𝛽𝑆⌋ values in 𝜎 . Then we randomly sample ⌊𝜇𝑆⌋
timestamps without replacement from 𝜎 ′ to generate the training

data mask𝑚.𝑚𝑡 = 1 if 𝑡 is sampled from 𝜎 ′, otherwise 0.

Although we still choose an important set of timestamps to mask,

the use of randomization through sampling ensures that the model

does not always mask the same set of timestamps for a sample

throughout its entire training regime. This gives the model a more

versatile representation of the underlying data distribution, yet,
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one that is important for the end task. This data-driven masking

strategy makes the model learn task-specific data representation by

reconstructing data at those timestamps deemed important by the

end task. Algorithm 1 outlines the training procedure of TARNet.

4 EXPERIMENTS

We present the datasets, baselines, training settings, followed by the

evaluation metrics. We then show and analyze classification and

regression results of TARNet. We also conduct an ablation study,

few-shot training experiments and case studies to justify TARNet.

4.1 Experimental Setup

We use benchmark time-series datasets with detailed information

available in UEA Archive [1], UCI Machine Learning Reposi-

tory [10, 15], and Monash University, UEA, UCR Time Series

Regression Archive [27]. These datasets represent an assortment

of domains (Motion, Audio, EEG, HAR), sensor type, and sampling

frequency. The number of training data points varies from 15 to

over one million, the length of the time series, 𝑆 , varies between

8 to 17, 984, the number of features, 𝑁 , varies between 1 to 1, 345,

and the number of target classes, 𝐶 , varies between 2 to 39. 𝑁 = 1

covers the uni-variate case. 𝑁 > 1 refers to the multi-variate case.

We compare TARNet with statistical [1, 4–6, 9, 24–26] and deep

learning [11–14, 18, 20, 28, 30, 35, 37, 38] baselines.

4.1.1 Statistical Baselines.
(1) Distance-based method [1]. Euclidean Distance (ED), dimen-

sion independent dynamic timewarping (DTWI), and dimension-

dependent dynamic time warping (DTWD) [25].

(2) SVR: [9] Support Vector Regression.

(3) Tree-based methods: Random Forest [26] and XGBoost [4].

(4) WEASEL-MUSE [24] is a bag-of-pattern based sliding-window

approach with statistical feature extraction and filtration.

(5) Rocket [5] convolves time series with random convolutional

kernels and applies global max pooling to extract features.

(6) MiniRocket [6] upgrades Rocket by speeding it up, using a

small, fixed set of kernels, and is almost entirely deterministic.

4.1.2 Deep Learning Baselines.
(1) FCN [30] Fully Convolutional Networks. Replaces traditional

final FC layer with a Global Average Pooling (GAP) layer.

(2) MLSTM-FCNs [18] expands LSTM-FCN and Attention LSTM-

FCN by adding squeeze-and-excitation blocks.

(3) Negative samples (NS) [14] generates negative samples and

trains a dilated causal convolution encoder with triplet loss.

(4) TapNet [38] designs random group permutation method with

multi-layer convolutional and attentional prototype network.

(5) ShapeNet [20] extends shapelet [33] for multivariate time-

series. Learns shared embedding space across different shapelet

candidates, trains a dilated causal CNN, followed by an SVM.

(6) Time Series Transformer (TST) [37] pre-trains Transformer

Encoder by masking random time segments and reconstructing

them. Reuses the same data to fine-tune the model.

(7) TS2Vec [35] performs hierarchical contrastive learning over

augmented context views. Builds representation of an arbitrary

sub-sequence by aggregating representations of timestamps.

(8) TNC [28] leverages local smoothness of a signal to define tem-

poral neighborhoods and learns generalizable representations.

(9) TS-TCC [11] encourages consistency of different data augmen-

tations to learn transformation-invariant representations.

(10) ResNet [12] uses convolutional followed by a GAP layer. Adds

shortcut residual connection between convolutional layers.

(11) Inception [13] is an ensemble of deep CNN models, inspired

by the Inception-v4 architecture.

We normalize the datasets for each of our experiments. For

datasets on which the accuracies of the baselines have been re-

ported, we present the same results according to their papers. For

the remaining datasets, we train all the baseline models with suffi-

cient hyper-parameter tuning to produce results. Since our bench-

mark datasets are widely heterogeneous in terms of number of data

points, features, sequence length, and sampling frequency, as well as

the physical nature of the data itself, we obtain better performance

via cursory tuning of architecture-specific hyper-parameters. To

select hyper-parameters, we do a random 80%-20% split of the train-

ing set and used the 20% as a validation set for hyper-parameter

tuning. After fixing the hyper-parameters, we train the model again

using the entire training set and save the model with the lowest

training loss. We use the saved model to evaluate on the official

test set and report our evaluation metrics.

4.2 Evaluation Metrics

We use accuracy and Root Mean Squared Error (RMSE) error as our

performance metric for classification and regression, respectively.

Considering the large number of datasets and baselines used, it is

highly unlikely for a single model to outperform all other methods

on every datasets. Therefore, we also present some summary sta-

tistics to present a holistic and a fairer comparison of the methods.

The evaluation metrics are as follows:

• Ours 1-to-1 Wins/Draws/Losses: Number of datasets for which

TARNet’s accuracy or RMSE is better/same/worse than the corre-

sponding baselines, respectively. Higher wins, lower draws and

lower losses are better. This is useful to draw a one-on-one com-

parison between TARNet and a given model.

• Mean Rank: Average rank of a model across all datasets. Lowest

rank is assigned to model with highest accuracy for classification

and lowest RMSE for regression. Lower mean rank is better.

• Avg.Rel.Diff.Mean [37]: We report the “average relative difference

from mean” metric 𝑟 𝑗 for each model 𝑗 , over 𝑁 datasets:

𝑟 𝑗 =
1

𝑁

𝑁∑︁
𝑖=1

𝑅(𝑖, 𝑗) − 𝑅𝑖
𝑅𝑖

, 𝑅𝑖 =
1

𝑀

𝑀∑︁
𝑗=1

𝑅(𝑖, 𝑗), (8)

where 𝑅(𝑖, 𝑗) is the RMSE of model 𝑗 on dataset 𝑖 and𝑀 is the num-

ber of models. 𝑟 𝑗 = −0.3 means that the model on average attains

30% lower RMSE on a dataset than the average model performance

on the same dataset. Lower value is better.

4.3 Classification

Table 1 shows the accuracy of the models. According to Table 1, the

overall accuracy of TARNet is the best among all comparedmethods.

TARNet performs the best on 17 datasets, as compared to 7 and 6

by the next best baselines TST [37] and Rocket [5], respectively.

TARNet achieves a 2.7-point higher average accuracy across all
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Table 1: Accuracy of TARNet and baselines on classification datasets from UEA Archive and UCI Machine Learning

Repository. We mark the best and second best values. Baselines are presented in ascending order (left to right) by average

accuracy. A dash indicates that the corresponding method failed to run on this dataset. Higher Total best accuracy, average

accuracy, and Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws, Ours 1-to-1 Losses, and Mean Rank is better.

Dataset ED MLSTM-FCNs DTWD TapNet DTWI NS WEASEL-MUSE TS-TCC TNC ShapeNet TS2Vec Rocket MiniRocket TST TARNet

ArticularyWordRecognition 0.970 0.973 0.987 0.987 0.980 0.987 0.990 0.953 0.973 0.987 0.987 0.993 0.993 0.947 0.977

AtrialFibrillation 0.267 0.267 0.220 0.333 0.267 0.133 0.333 0.267 0.133 0.400 0.200 0.067 0.133 0.533 1.000

BasicMotions 0.676 0.950 0.975 1.000 1.000 1.000 1.000 1.000 0.975 1.000 0.975 1.000 1.000 0.925 1.000

CharacterTrajectories 0.964 0.985 0.989 0.997 0.969 0.994 0.990 0.985 0.967 0.980 0.995 0.991 0.990 0.971 0.994

Cricket 0.944 0.917 1.000 0.958 0.986 0.986 1.000 0.917 0.958 0.986 0.972 1.000 0.986 0.847 1.000

DuckDuckGeese 0.275 0.675 0.600 0.575 0.550 0.675 0.575 0.380 0.460 0.725 0.680 0.500 0.750 0.300 0.750

EigenWorms 0.549 0.504 0.618 0.489 - 0.878 0.890 0.779 0.840 0.878 0.847 0.650 0.790 0.720 0.420

Epilepsy 0.666 0.761 0.964 0.971 0.978 0.957 1.000 0.957 0.957 0.987 0.964 0.986 1.000 0.775 1.000

ERing 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.904 0.852 0.133 0.874 0.989 0.974 0.930 0.919

EthanolConcentration 0.293 0.373 0.323 0.323 0.304 0.236 0.430 0.285 0.297 0.312 0.308 0.450 0.430 0.337 0.323

FaceDetection 0.519 0.545 0.529 0.556 - 0.528 0.545 0.544 0.536 0.602 0.501 0.638 0.612 0.625 0.641

FingerMovements 0.550 0.580 0.530 0.530 0.520 0.540 0.490 0.460 0.470 0.580 0.480 0.520 0.550 0.590 0.620

HandMovementDirection 0.278 0.365 0.231 0.378 0.306 0.270 0.365 0.243 0.324 0.338 0.338 0.486 0.392 0.675 0.392

Handwriting 0.200 0.286 0.286 0.357 0.316 0.533 0.605 0.498 0.249 0.451 0.515 0.596 0.520 0.359 0.281

Heartbeat 0.619 0.663 0.717 0.751 0.658 0.737 0.727 0.751 0.746 0.756 0.683 0.741 0.771 0.782 0.780

InsectWingbeat 0.128 0.167 - 0.208 - 0.160 - 0.264 0.469 0.250 0.466 0.179 0.229 0.687 0.137

JapaneseVowels 0.924 0.976 0.949 0.965 0.959 0.989 0.973 0.930 0.978 0.984 0.984 0.978 0.986 0.995 0.992

Libras 0.833 0.856 0.870 0.850 0.894 0.867 0.878 0.822 0.817 0.856 0.867 0.906 0.922 0.861 1.000

LSST 0.456 0.373 0.551 0.568 0.575 0.558 0.590 0.474 0.595 0.590 0.537 0.635 0.653 0.576 0.976

MotorImagery 0.510 0.510 0.500 0.590 - 0.540 0.500 0.610 0.500 0.610 0.510 0.460 0.610 0.610 0.630

NATOPS 0.850 0.889 0.883 0.939 0.850 0.944 0.870 0.822 0.911 0.883 0.928 0.872 0.933 0.939 0.911

PEMS-SF 0.705 0.699 0.711 0.751 0.734 0.688 - 0.734 0.699 0.751 0.682 0.832 0.809 0.930 0.936

PenDigits 0.973 0.978 0.977 0.980 0.939 0.983 0.948 0.974 0.979 0.977 0.989 0.981 0.967 0.981 0.976

Phoneme 0.104 0.110 0.151 0.175 0.151 0.246 0.190 0.252 0.207 0.298 0.233 0.273 0.291 0.111 0.165

RacketSports 0.868 0.803 0.803 0.868 0.842 0.862 0.934 0.816 0.776 0.882 0.855 0.901 0.868 0.796 0.987

SelfRegulationSCP1 0.771 0.874 0.775 0.652 0.765 0.846 0.710 0.823 0.799 0.782 0.812 0.867 0.915 0.961 0.816

SelfRegulationSCP2 0.483 0.472 0.539 0.550 0.533 0.556 0.460 0.533 0.550 0.578 0.578 0.555 0.506 0.604 0.622

SpokenArabicDigits 0.967 0.990 0.963 0.983 0.959 0.956 0.982 0.970 0.934 0.975 0.988 0.997 0.963 0.998 0.985

StandWalkJump 0.200 0.067 0.200 0.400 0.333 0.400 0.333 0.333 0.400 0.533 0.467 0.467 0.333 0.600 0.533

UWaveGestureLibrary 0.881 0.891 0.903 0.894 0.868 0.884 0.916 0.753 0.759 0.906 0.906 0.931 0.785 0.913 0.878

PAMAP2 0.718 0.949 0.683 0.865 0.769 0.885 0.928 0.942 0.938 0.948 0.941 0.931 0.962 0.948 0.974

OpportunityGestures 0.655 0.768 0.762 0.574 0.715 0.689 0.553 0.791 0.821 0.730 0.771 0.813 0.809 0.732 0.830

OpportunityLocomotion 0.845 0.900 0.859 0.850 0.868 0.859 0.634 0.881 0.874 0.874 0.842 0.875 0.886 0.907 0.908

Occupancy [15] 0.496 0.873 0.517 0.844 0.526 0.817 0.556 0.865 0.828 0.852 0.876 0.832 0.878 0.881 0.883

Total best accuracy 0 0 1 2 1 2 5 1 0 2 1 6 4 7 17

Average accuracy 0.596 0.651 0.658 0.672 0.675 0.686 0.688 0.692 0.693 0.717 0.722 0.732 0.741 0.745 0.772

Ours 1-to-1 Wins 32 26 27 23 31 23 25 28 29 25 24 20 21 20 -

Ours 1-to-1 Draws 0 0 2 2 1 2 3 1 1 2 0 2 4 0 -

Ours 1-to-1 Losses 2 8 5 9 2 9 6 5 4 7 10 12 9 14 -

Mean Rank 12.15 8.79 9.65 7.44 10.44 7.59 7.79 9.03 9.41 5.47 7.18 5.18 4.71 5.74 4.00

datasets over TST. The closest competitors of TARNet are TST and

Rocket, but TARNet still outperforms them on 20 datasets while

losing on 14 and 12, respectively. TARNet ranks 1
st
(lowest “Mean

Rank”) on average, having a 0.71-point lower average than the 2
nd

best MiniRocket. Rocket and ShapeNet ranks 3
rd

and 4
th

with a

1.18 and 1.47-point higher average, respectively, than TARNet.

The large number of datasets and baselines used makes it highly

unlikely for a single model to outperform all other methods on

every dataset. For example, TST had the 2
nd

best “Total best Accu-

racy” (7) and “Average Accuracy” (0.745), but it ranks 5
th

across all

models, with a 1.74-point higher average than TARNet. This means

that for the datasets where TST under-performs, its performance

metrics are significantly below those of other baselines, pushing

down its “Mean Rank.” However, TARNet performs well across all

evaluation metrics. Not only does it have the highest “Total best

Accuracy” (17) and “Average Accuracy” (0.772), but it also ranks 1
st
,

meaning that for the datasets where TARNet under-performs, it still

generates better performance than most of its baselines, pushing up

its “Mean Rank”. Moreover, from Table 1, we find that on datasets

where TARNet under-performs, the winning methods are in fact

different. Considering that no single baseline is consistently better

than TARNet, as illustrated by the baselines’ low number of best

accuracies, low average accuracies and high mean rank, we argue

that TARNet is the new benchmark for time-series classification.

Moreover, TARNet achieves the best accuracy across a diverse

set of data characteristics. For example, TARNet has the best ac-

curacy for Atrial Fibrillation and Occupancy with 15 and 1.2𝑚+
training data points, respectively, for RacketSports and Cricket

with sequence length of 30 and 1197, respectively, for Epilepsy and

FaceDetection with 3 and 44 features, respectively and for MotorIm-

agery and OpportunityGestures with 2 and 17 classes, respectively.

4.4 Regression

We compare regression results against all the baselines reported

by TST [37]. Table 2 shows the Root Mean Squared Error of the

models. TARNet ranks 1
st
on three and 2

nd
on two datasets, which
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Table 2: Root Mean Squared Error (RMSE) Performance of TARNet and baselines on regression datasets from Monash Univer-

sity, UEA, UCR Time Series Regression Archive [27]. We mark the best and second best values. Baselines are presented in

descending order (left to right) by mean rank. Avg.Rel.Diff.Mean: Average Relative Difference from Mean over all models, e.g.

-0.3 means that the model on average attains 30% lower RMSE than the average model performance. Higher Total best loss and

Ours 1-to-1 Wins is better. Lower Ours 1-to-1 Draws, Ours 1-to-1 Losses, Mean Rank, and Avg.Rel.Diff.Mean is better.

Dataset 1-NN-DTWD 1-NN-ED 5-NN-ED 5-NN-DTWD SVR ResNet FCN Rocket Inception RF XGB TST TARNet

AppliancesEnergy 6.036 5.231 4.227 4.019 3.457 3.065 2.865 2.299 4.435 3.455 3.489 2.375 2.173

BenzeneConcentration 4.983 6.535 5.844 4.868 4.790 4.061 4.988 3.360 1.584 0.855 0.637 0.494 0.481

BeijingPM10 139.134 139.229 115.502 115.502 110.574 95.489 94.438 120.057 96.749 94.072 93.138 86.866 90.482

BeijingPM25 88.256 88.193 74.156 72.717 75.734 64.462 59.726 62.769 62.227 63.301 59.495 53.492 60.271

LiveFuelMoisture 57.111 58.238 46.331 46.290 43.021 51.632 47.877 41.829 51.539 44.657 44.295 43.138 41.091

IEEEPPG 37.140 33.208 27.111 33.572 36.301 33.150 34.325 36.515 23.903 32.109 31.487 27.806 26.372

Total best loss 0 0 0 0 0 0 0 0 1 0 0 2 3

Ours 1-to-1 Wins 6 6 6 6 6 6 5 6 5 6 5 4 -

Ours 1-to-1 Draws 0 0 0 0 0 0 0 0 0 0 0 0 -

Ours 1-to-1 Losses 0 0 0 0 0 0 1 0 1 0 1 2 -

Mean Rank 12.167 11.833 8.833 8.833 8.000 7.333 7.000 6.500 6.500 5.500 4.333 2.500 1.833

Avg.Rel.Diff.Mean 0.355 0.379 0.153 0.125 0.097 0.006 0.022 -0.047 -0.107 -0.171 -0.196 -0.302 -0.313

Table 3: Ablation study of TARNet

TARNet-Random TARNet-Top 𝜇 TARNet

Results on 34 classification datasets

Total best accuracy 6 9 31

Average accuracy 0.752 0.741 0.772

Ours 1-to-1 Wins 28 25 -

Ours 1-to-1 Draws 5 7 -

Ours 1-to-1 Losses 1 2 -

Mean Rank 2.206 2.176 1.088

Results on 6 regression datasets

Total best loss 0 1 5

Ours 1-to-1 Wins 6 5 -

Ours 1-to-1 Draws 0 0 -

Ours 1-to-1 Losses 0 1 -

Mean Rank 2.667 2.167 1.167

Avg.Rel.Diff.Mean 0.046 0.014 -0.060

is better than what any of the baseline models achieve. For the

overall rank, TARNet achieves an average rank of 1.833, setting it

clearly apart from all other models; the overall second best model,

TST [37] has an average rank of 2.5; XGB, Inception, and FCN

(which outperformed TARNet on one dataset) on average ranks

4.333, 6.5, and 7, respectively. Both TST [37] and TARNet use a simi-

lar transformer backbone model which explains the small difference

in Avg.Rel.Diff.Mean scores. However, TARNet still outperforms

TST and all other baseline models by attaining 31.3% lower RMSE

on average than the mean RMSE among all models. Considering

that TARNet achieves the highest number of best losses, lowest

mean rank, and lowest Avg.Rel.Diff.Mean in Table 2, we argue that

TARNet is the new benchmark for time-series regression.

Although TST [37] pretrains and finetunes on the same dataset,

the data reconstruction and the supervised end-task runs sequen-
tially, slowing down training time. However, TARNet trains both

tasks, 𝑇𝑇𝐴𝑅 and 𝑇𝐸𝑁𝐷 parallely. Hence, not only TARNet outper-

forms TST on the end-task but it also trains faster than TST.

4.5 Ablation Study

We justify our design choices of𝑀 through ablation study results on

classification and regression tasks in Table 3. TARNet-Random uses

the same architecture as TARNet but instead masks timestamps

randomly and reconstructs them, giving substandard performance.

TARNet-Top 𝜇 selects timestamps corresponding to the top ⌊𝜇𝑆⌋
values in 𝜎 andmasks them fromX for reconstruction. This does not

lead to a clear improvement which may be attributed to overfitting,
as explained in Section 3.5. This prompts sampling to TARNet-Top

𝜇 while selecting the timestamps to mask from the set of important

timestamps, resulting in TARNet. To ensure a fair comparison, we

maintain the same set of hyper-parameters across all ablation mod-

els for each dataset. Table 3 shows that TARNet has the highest

average accuracy, most number of datasets with highest accuracy

and lowest loss, and lowest mean rank. TARNet combines ideas

from both TARNet-Random and TARNet-Top 𝜇 to counter their

individual drawbacks and yields better performance.

4.6 Can 𝑇𝑇𝐴𝑅 compensate for limited labeled

training data?

We study whether under data-deficient environments TARNet can

make better use of limited data compared to baselines. This will

illustrate if the knowledge gained during reconstruction,𝑇𝑇𝐴𝑅 , can

compensate for a lack of labeled data to train the end task, 𝑇𝐸𝑁𝐷 .

We choose occupancy and human gestures datasets for classi-

fication. As Figure 2 (a) and (b) show, the accuracy of all models

increases as the amount of training data increases. Particularly,

TARNet has a steep rise for both datasets, signifying that the great-

est improvement occurs with low quantity of training data. Sim-

ilarly, we choose LiveFuelMoisture and IEEEPPG datasets for re-

gression. As Figure 2 (c) and (d) show, the RMSE Loss of all models

decreases as the amount of training data increases. Even with just

25% training data, TARNet achieves significantly lower loss than

any baselines. It achieves superior performance over all baselines at

all quantities of training data, for both classification and regression.

Both TST and TARNet can leverage additional information learnt

though reconstruction to compensate for the lack of labeled data,

resulting in better performance over other baselines. However,

making the reconstruction task-aware improves the performance of

TARNet over TST. For example, in Occupancy, TARNet achieves the

same performance with 50% training data, which TST and ShapeNet

require 75% training data to achieve. Similarly, for LiveFuelMoisture
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(a) Occupancy (b) Opportunity Gestures

(c) LiveFuelMoisture (d) IEEEPPG

Figure 2: (a) and (b) show classification accuracy, and (c) and

(d) show regression RMSE Loss against % of training data.

Figure 3: 𝜎 plotted as heatmap for Epilepsy.

and IEEEPPG, TARNet achieves lower RMSE with just 25% and 50%

training data, respectively, than TST does with 100% training data.

4.7 Explaining Masking Strategy,𝑀

We provide two real-world case studies to show why a task-aware

reconstruction learnt through a data-driven masking strategy,𝑀 ,

is superior to a reconstruction learnt through random masking. For

qualitative analysis, we show normalized aggregate attention, 𝜎 ,

computed from attention maps of Transformer during 𝑇𝐸𝑁𝐷 .

Case Study I: Epilepsy. Figure 3 shows a time-series plot of an

accelerometer data from a person conducting the activity of “Saw-

ing” (classification label). Following the time-series plot are the

𝜎 scores, as discovered by TARNet and TARNet-Random. Sawing

involves strong periodic motion of the hand as illustrated by the

time-series plot. Figure 3 shows that a random-masking based auto-

regressive task (TARNet-Random) could not capture this inherent

Figure 4: 𝜎 plotted as heatmap for Face Detection.

periodicity in the data, which TARNet could successfully decipher.

Therefore, the accuracy achieved by TARNet and TARNet-Random

is 1 and 0.75, respectively. Being able to selectivelymask “important”

timestamps during reconstruction in a data-driven manner enables

TARNet to effectively capture the domain-specific properties from

the data, leading to better classification performance.

Case Study II: Face Detection. A person is shown a face image

or a scrambled image and her MEG readings are recorded. The task

is to determine what the person saw (classification) based on the

collected MEG data. The MEG recording (response) is collected over

1.5-second but the image (stimulus) is only shown 0.5-seconds after

the MEG has started recording. Figure 4 shows the time-series plot

of a sample MEG data. Since the entire 1.5-second corresponds to 62

timestamps, this means that no stimulus was provided to the subject

for the first 20 timestamps (0.5-seconds). So the discriminatory

MEG response, important for classification, is received from 20-th

timestamp onward, as illustrated by the onset of sudden fluctuation

in signal strength. Figure 4 shows that TARNet assigns high𝜎 values

around the 20-th timestamp and can clearly infer the signal arrival

time from the MEG response. TARNet discriminates between the

“unimportant” and “important” timestamps for classification by

assigning higher average attention per timestamp for times greater

than 20 than to those before 20. However, TARNet-Random fails to

infer such task-specific domain properties from the data and assigns

attention weights randomly across time. Hence, TARNet-Random

achieves an accuracy of 0.607, whereas TARNet achieves 0.641.

The two case studies substantiate why using𝑀 to decide which

timestamps to mask during reconstruction is important. Repre-

sentations learnt through reconstructing “important” timestamps

reflect some domain-specific inherent properties in the data, as illus-

trated by how the attention scores have been assigned. Such domain

properties are relevant to the end task and can clearly lead to per-

formance improvement on the end task, as illustrated in Table 1

and 2. We also highlight that the utility of self-attention goes be-

yond computing internal data representation of a model to improve

performance [29] or providing meaningful explanations [17, 34].

In addition, self-attention can also be used to integrate simple and

intuitive data-driven techniques into deep learning frameworks.

5 DISCUSSION AND CONCLUSIONS

We have proposed a task-aware reconstruction technique to im-

prove end-task performance for a time series. In particular, we use
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attention score distribution to identify timestamps important to an

end task. We then sample from those important timestamps and

mask them from the data for reconstruction, making the reconstruc-

tion end task-aware. These tasks are trained alternately, sharing

parameters in the same model, thereby enabling the representation

learnt through reconstruction to improve end-task performance.

Experimental results show that TARNet outperforms the state-of-

the-art baselines for both classification and regression tasks. The

ablation study highlights the essence of our design choices for the

data masking technique, and the case study observations show how

TARNet captures the intrinsic task-specific properties of data.

Additional unlabeled data can help to improve TARNet. Al-

though the data reconstruction task is fully unsupervised, it is

driven by the end task that requires labeled data. In the future, we

wish to explore such task-aware representations under data shift

problem and in the presence of outliers.
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