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● Data scarcity in time series is very common

○ Malfunctioning sensors due to battery depletion

○ Privacy concerns in medical domain

○ Cold-start prediction for new stations or new stores
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● Data augmentation mitigates the data scarcity issue

● Existing time-series augmentation methods are mainly designed for classification
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Original Permutation

Class labels can be 

preserved even if 

augmentation changes 

the temporal dynamics



● Augmentation for time-series forecasting requires diversity as well as coherence 

with the temporal dynamics
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Original Filtering: 
not diverse

Permutation: 
not coherent



● Unlike images or text, time-series data generated by real-life physical processes 

have characteristics in both time and spectral domains 

● Our contribution: Combining Spectral and Time Augmentation (STAug) to 

generate more diverse and coherent samples for time-series forecasting
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● Combine frequency-domain augmentation and time-domain augmentation
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● Frequency-domain augmentation: decompose time series with Empirical Mode 

Decomposition (EMD), and reassemble subcomponents with random weights 
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● Diversity: random weights to combine components

● Coherence: augmented samples have the same set of 

base components



● Time-domain augmentation: mix up values at both history and future time steps
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● Diversity: random weights to combine series pairs

● Coherence: only generate linearly in-between samples 

by the interpolation nature of “mix up”



● During training, we apply both frequency-domain and time-domain augmentation 

to obtain an augmented sample 

● Optimize the downstream forecasting model with augmented samples as input
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● Datasets: ETTh1, ETTh2, ETTm1, ETTm2, Exchange

● Forecasting backbone model: Informer (AAAI’ 21 best paper)

● Baselines: basic random operations (WW, RobustTAD), decomposition-based 

augmentation (STL, EMD-R), pattern mixing method (DBA), generative 

method (GAN)
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● STAug reduces average MSE by 28.2% and average MAE by 18.0% compared 

with the best baseline for each of the five datasets
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● STAug stays the most robust with respect to original sample size
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● STAug forecasts values that better align with the original time series
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● Diverse and coherent augmentation for time-series forecasting 

○ In the frequency domain, the re-combined subcomponents of original time 

series are both diverse and preserve the original basic components

○ In the time domain, we adapt “mix up” to generate diverse and in-between 

coherent samples by linearly interpolating past and future parts of series

● Experiments on five datasets show that STAug best reduces the forecasting 

errors of the base model compared with existing augmentation methods. 
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Thanks!
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