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Background and Motivation

Data scarcity in time series is very common

* Malfunctioning sensors: battery depletion
* Privacy concerns: medical data
» (Cold-start prediction: new station, new store

Data augmentation mitigates the data scarcity issue

X However, existing augmentation methods are
designed for classification, where class labels can

be preserved even if augmentation changes the
temporal dynamics
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Augmentation for forecasting requires diversity
as well as coherence with the temporal dynamics

. Time-series data generated by real-life physical

processes have characteristics in both time and
frequency domains to capture temporal dynamics

Augmentation Method

Combine frequency-domain augmentation and time-

domain augmentation

Spectrum Augmentation
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S; Time Augmentation

A ~ Beta(a, a)
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Frequency-domain augmentation: decompose

time series with Empirical Mode Decomposition
(EMD), and reassemble subcomponents with
random weights sampled from U(a, b)
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Diversity: random weights to combine components

Coherence: augmented samples have the same
set of base components

Time-domain augmentation: mix up values at both
history and future time steps with A ~ Beta(a, a)
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Diversity: random weights to combine series pairs

Coherence: only augment linearly in-between
samples by the interpolation nature of “mix up”

Experiments

Forecasting backbone: Informer (AAAI' 2021 best paper)

Average 28.2% MSE reduction and 18.0%

MAE reduction compared with the best
baseline for each of the five datasets

Our method is the most robust with respect to down-
sampling training data

-=>=- None —-%=- STL EMD-R WW —%— Ours

1.6
1.41
1.2

<

< 1.0/
0.8-
0.6

0.4

10% 20% 50% 100% 10% 20% 50% 100%
Down-sampling Ratio Down-sampling Ratio

Case study: prediction better aligns with ground truth
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Exchange dataset



