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ABSTRACT
Time-series data augmentation mitigates the issue of in-

sufficient training data for deep learning models. Yet, existing
augmentation methods are mainly designed for classification,
where class labels can be preserved even if augmentation al-
ters the temporal dynamics. We note that augmentation de-
signed for forecasting requires diversity as well as coherence
with the original temporal dynamics. As time-series data gen-
erated by real-life physical processes exhibit characteristics
in both the time and frequency domains, we propose to com-
bine Spectral and Time Augmentation (STAug) for generat-
ing more diverse and coherent samples. Specifically, in the
frequency domain, we use the Empirical Mode Decomposi-
tion to decompose a time series and reassemble the subcom-
ponents with random weights. This way, we generate diverse
samples while being coherent with the original temporal re-
lationships as they contain the same set of base components.
In the time domain, we adapt a mix-up strategy that generates
diverse as well as linearly in-between coherent samples. Ex-
periments on five real-world time-series datasets demonstrate
that STAug outperforms the base models without data aug-
mentation as well as state-of-the-art augmentation methods.

Index Terms— Time Series, Data Augmentation, Fore-
casting, Decomposition, Spectral Analysis

1. INTRODUCTION

Deep learning has been successful in various time-series ap-
plications given enormous amount of data to train. However,
time-series data collected through real-world sensors is often
marked by irregular samples with missing values due to col-
lection difficulties. Such data scarcity commonly observed in
time-series data can significantly degrade the performance of
deep learning methods that would otherwise perform well.

A rich line of research tries to address this problem
through data augmentation, that is to generate synthetic data
points to augment the original dataset [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. However, existing augmentation methods are
mainly designed for classification, where augmented samples
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Fig. 1: Visualization of original and augmented time series
from ETTm2. Augmentation methods often (b) miss diversity
or (c) miss coherence with the original temporal dynamics.

remain effective as long as they preserve the class labels. We
note that augmentation designed for forecasting requires both
diversity and coherence with the original temporal dynam-
ics. Yet, existing augmentation methods generate samples
that often miss one of the criteria (Figure 1). For example,
filtering-based methods are deterministic processes that pro-
duce a fixed set of synthetic samples by removing noises.
Permutation-based methods change the temporal order of the
original series, worsening forecasting performance.

Moreover, time-series data generated by real-life physi-
cal processes exhibit characteristics both in the time and fre-
quency domains that are not available in other data modali-
ties like image and text. Therefore, temporal dynamics can
be best captured through a joint consideration of time do-
main that carries changes over time and frequency domain
that conveys periodic patterns. By contrast, existing augmen-
tation methods mostly generate data in one domain, ignoring
the complementary strengths of both domains.

We propose STAug (Figure 2), by combining Spectral and
Time Augmentation for time-series forecasting task. In the
frequency domain, we first apply the Empirical Mode Decom-
position (EMD) [13] to decompose time series into multiple
subcomponents, each representing a certain pattern embedded
in the data. We then reassemble these subcomponents with
random weights to generate new synthetic series. This offers
a principled way of augmentation as it generates diverse sam-
ples while maintaining the same basic set of subcomponents.
We adopt EMD for the frequency information as it better cap-
tures patterns for non-stationary time series compared with
Fourier transform. In the time domain, we adapt a mix-up
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Fig. 2: Overview of STAug. For frequency-domain augmen-
tation, we decompose two random series Si,Sj (marked in
blue) with Empirical Mode Decomposition (EMD), and then
reassemble the subcomponents with random weights sampled
from uniform distribution U(a, b) to obtain S′

i,S
′
j (marked in

orange). In the time domain, we further linearly mix S′
i,S

′
j to

obtain the augmented series S′ (marked in red) for training.

strategy [14] to learn linearly in-between randomly sampled
pairs of training series, which produces varied and coherent
samples. We evaluate STAug on five real-world time-series
datasets, and the method demonstrates state-of-the-art perfor-
mance compared with existing augmentation methods.

2. RELATED WORK

Existing time-series data augmentation techniques mainly fall
into four categories [15, 16] as follows.

Basic random operations include time-domain transfor-
mation, frequency-domain transformation and time-frequency
domain transformation. Time-domain transformation con-
tains scaling, rotation, jittering [1], slicing, warping [2, 17],
etc. For frequency-domain transformation, RobustTAD [18]
in the frequency domain makes perturbations in both mag-
nitude and phase spectra. For time-frequency domain trans-
formation, time-frequency features are generated from Short
Fourier Transform (STFT), and then local averaging together
with feature vector shuffling are applied for augmentation [7].
SpecAugment [19] proposes augmentation in Mel-Frequency
by combining warping, masking frequency channels and
masking time step blocks together.

Decomposition-based augmentation leverages the Seasonal-
Trend Decomposition (STL) [20] or Empirical Mode De-
composition (EMD) [13] to extract patterns for generat-
ing synthetic samples. Bagging Exponential Smoothing
method [3, 21, 22] uses Box–Cox transformation followed by
STL decomposition, and bootstraps the reminder to assemble
new series. STL decomposition components can also be ad-
justed and combined with a stochastic component generated
by statistical models [21, 22]. Nam et al. [10] decomposes
series using EMD into components from high frequency to
low frequency, and adds the residue each time one IMF oc-

curs. This can be viewed as a special case of STAug with
weights equal to one for low-frequency components and zero
for high-frequency components, essentially only filtering out
high-frequency noise. Moreover, the method does not benefit
from time-domain augmentation.

For pattern mixing method, DBA calculates weighted av-
erage of multiple time series under DTW as new samples [4,
22]. Mix-up [14] constructs new examples through linear in-
terpolation of both features and labels, but such interpolation
methods mainly focus on classification tasks.

Generative method models underlying distribution of the
dataset for generation, including both statistical generative
models [23, 12] and deep generative adversarial network
(GAN) [24] based models [5, 6, 25, 8, 9, 11].

In this work, we combine decomposition-based augmen-
tation method in the frequency domain and pattern mixing
augmentation method in the time domain to find diverse sam-
ples that preserve the original data characteristics.

3. METHODOLOGY

3.1. Overview

We focus on multivariate time series forecasting task. A mul-
tivariate time series sequence of length T and feature number
c is denoted as S = [s1, . . . , st, . . . , sT] ∈ Rc×T , where st =
[s1, · · · , sc]T ∈ Rc. In a forecasting task, we only observe
history values H up to timestamp d < T : H = [s1, . . . , sd] ∈
Rc×d, and the goal is to forecast future values F at times-
tamp d + 1, . . . , T : F = [sd+1, . . . , sT] ∈ Rc×(T−d), where
S = [H,F]. During training, we have full access to both H
and F, and the training objective is to learn a model g that
forecasts F given H for each S in the training set. During
testing, we have access to only H and input H to model g to
obtain predictions for the future part.

Our method STAug comprises augmentation in both the
frequency domain and time domain. In the frequency do-
main, we first apply empirical mode decomposition to obtain
a set of components. Then during each iteration, these com-
ponents are re-combined with random weights to construct
a new synthetic series. Then, we adapt mix-up as a time-
domain augmentation. We linearly interpolate two randomly
re-combined series to obtain the final augmented series. The
augmented series are fed into the forecasting model for up-
dating gradient. The EMD components of different series
could be pre-computed, and STAug only requires randomly
re-combining components or series during training, which in-
troduces minimal computational overhead.

3.2. Frequency-Domain Augmentation

The Empirical Mode Decomposition (EMD) [13] method was
originally designed to analyze nonlinear and non-stationary
data, whose constituent components are not necessarily
cyclic. EMD preserves temporal information in contrast with



Fourier transform, and is data-driven compared with the linear
wavelet transform. It decomposes a signal into a finite num-
ber of Intrinsic Mode Functions (IMF). The first several IMFs
usually carry components of higher frequency (e.g., noise),
while the last several IMFs represent the low-frequency trend
information embedded in the sequence. Therefore, EMD pro-
vides a principled way to decompose a signal into multiple
components, and each of these components represents certain
patterns embedded in the original signal.

After EMD, the original sequence could be written as

S =

n∑
i=1

IMFi +R. (1)

With a list of n decomposed IMFs {IMF1, . . . , IMFn}
and residual R, we apply a random vector w = [w1, . . . , wn]

T

as weights to re-combine these IMFs as S′:

S′ =

n∑
i=1

wi · IMFi (2)

where wi is sampled from uniform distribution U(0, 2). This
way, the augmented samples are diverse by emphasizing dif-
ferent frequency components via random weights, and at the
same time coherent with original distributions as they contain
the same basic sets of components.

3.3. Time-Domain Augmentation

Complementing the frequency-domain information, time do-
main also provides useful patterns. Therefore, we propose
to mix up sequences in the time domain, inspired by Mix-up
augmentation [14]. Mix-up was originally designed for clas-
sification, and we adapt it to time-series forecasting by mixing
up values at both past timestamps 1, . . . , d and future times-
tamps d+1, . . . , T . Assume Si = [Hi,Fi] and Sj = [Hj,Fj]
are two randomly sampled sequences after spectral augmenta-
tion, where Hi = [s1i , . . . , s

d
i ],Fi = [sd+1

i , . . . , sTi ] respec-
tively represents past and future data, similarly for Sj. We
construct new sequence as S′ = [H′,F′], where

H′ = λHi + (1− λ)Hj, (3)

F′ = λFi + (1− λ)Fj, (4)

where λ is sampled from a Beta distribution, i.e., λ ∼
Beta(α, α), and α is the hyper-parameter that controls how
similar the newly constructed sequence is compared with
the original sequences Si and Sj. Mix-up augments patterns
in the time domain meanwhile by its interpolation nature
generates only linearly in-between coherent samples.

3.4. Time-Series Forecasting

For each training iteration, we apply both frequency-domain
and time-domain augmentation to obtain an augmented series

S′ = [H′,F′]. During training, we feed the augmented se-
ries history H′ as input, and optimize the forecasting model
through reconstructing future part of the series F′. In our
experiments, we adopt the state-of-the-art forecasting model
Informer [26] (AAAI 2021 best paper) as the base forecaster.
To minimize the reconstruction loss L, we calculate Mean
Square Error (MSE) between the forecasting model output Y
and the ground-truth future part F′:

L =
1

N

N∑
i=1

||Yi − F′
i||22, (5)

where N is the number of augmented series in training set.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Datasets, Baselines and Experimental Setup

We evaluate our augmentation method STAug on five time-
series datasets: ETTh1, ETTh2, ETTm1, ETTm2, Ex-
change [26, 27]. We follow previous studies [26, 27] for
96 context length and 96, 192, 336, 720 forecasting horizon.
All the datasets in our experiments are multivariate, and we
apply EMD and mix-up separately for each original variable,
and concatenate them to obtain the augmented multivariate
time series. We follow previous works for 7 : 2 : 1 train, val-
idation and test set split, and evaluate the performance with
Mean Square Error (MSE) and Mean Absolute Error (MAE).

We use Informer [26] as the base forecasting model. α of
the Beta distribution equals 0.5, which is chosen from a grid
search of {0.25, 0.5, 0.75, 1.0}. a, b of the Uniform distribu-
tion U(a, b) are set to 0 and 2, respectively. We use Adam op-
timizer with a decaying learning rate starting from 1e−4. We
compare STAug with base model without any augmentation
(None), as well as state-of-the-art time series augmentation
methods: WW [2], DBA [4, 28, 22], EMD-R [10], GAN [5],
STL [3, 22], RobustTAD [18]. We conducted careful grid
search for hyper-parameter tuning for each baseline. We re-
peat all the experiments for 3 runs and record both average
performance and standard deviation.

4.2. Main Results

We evaluate STAug and report both average results and stan-
dard deviation in Table 1. We bold the best results, underline
the second best, and mark with dash line the best base-
line. STAug consistently outperforms baselines on different
datasets by jointly leveraging time-domain and frequency-
domain information, with an average reduction of 28.2% for
MSE and 18.0% for MAE, compared with the best baseline
for each dataset. To evaluate the statistical significance, we
also run the Friedman test and the Wilcoxon-signed rank
test with Holm’s α (5%) following previous work [29]. The
Friedman test shows statistical significance p = 0.00 (much



Table 1: MSE, MAE (average and standard deviation) with input context length 96 and forecasting horizon {96, 192, 336, 720}.
We bold the best performing results, underline the second best, and mark with dashline the best baseline.

Methods None WW RobustTAD STL EMD-R GAN DBA STAug-noTime STAug-noFreq STAug

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.95±0.06 0.76±0.04 0.89±0.06 0.73±0.04 1.01±0.03 0.79±0.01 0.91±0.05 0.74±0.03 0.84±0.05 0.69±0.03 0.90±0.08 0.73±0.06 0.94±0.06 0.76±0.04 0.66±0.01 0.57±0.01 0.84±0.06 0.69±0.03 0.65±0.01 0.57±0.01
192 0.98±0.02 0.77±0.02 1.00±0.12 0.78±0.08 0.95±0.02 0.74±0.01 0.94±0.02 0.74±0.02 0.94±0.04 0.73±0.04 0.99±0.04 0.76±0.03 0.98±0.02 0.77±0.02 0.75±0.02 0.62±0.01 0.96±0.00 0.76±0.01 0.77±0.03 0.63±0.02
336 1.11±0.04 0.83±0.02 1.06±0.03 0.81±0.02 1.09±0.06 0.82±0.04 1.09±0.04 0.81±0.02 1.06±0.02 0.80±0.01 1.07±0.01 0.82±0.01 1.11±0.04 0.83±0.02 0.86±0.02 0.68±0.01 1.10±0.06 0.83±0.03 0.89±0.02 0.71±0.01
720 1.18±0.03 0.86±0.02 1.20±0.02 0.88±0.01 1.15±0.02 0.84±0.01 1.19±0.02 0.86±0.01 1.19±0.02 0.87±0.01 1.22±0.04 0.89±0.01 1.18±0.03 0.87±0.02 0.99±0.06 0.75±0.03 1.16±0.01 0.86±0.01 0.97±0.00 0.75±0.00

E
T

T
h2

96 3.08±0.62 1.38±0.13 3.40±0.48 1.46±0.11 3.03±0.25 1.38±0.05 3.04±0.48 1.37±0.11 3.44±0.29 1.45±0.05 2.91±0.36 1.38±0.09 3.01±0.54 1.37±0.12 1.80±0.11 1.01±0.04 2.98±0.57 1.37±0.14 1.87±0.30 1.05±0.09
192 5.97±0.30 2.02±0.05 6.43±0.68 2.10±0.09 6.20±0.35 2.08±0.05 5.89±0.46 2.02±0.08 6.33±0.10 2.09±0.00 5.47±0.30 1.94±0.05 5.64±0.47 1.94±0.09 4.02±0.23 1.57±0.05 5.23±0.15 1.89±0.03 3.47±0.24 1.48±0.06
336 4.78±0.33 1.83±0.08 4.97±0.07 1.85±0.05 5.29±0.15 1.88±0.01 4.77±0.24 1.83±0.05 5.44±0.18 1.95±0.05 4.91±0.31 1.87±0.06 4.77±0.32 1.83±0.08 3.39±0.27 1.48±0.07 4.37±0.26 1.74±0.05 3.37±0.14 1.51±0.04
720 3.99±0.27 1.69±0.06 3.83±0.13 1.68±0.04 3.90±0.13 1.66±0.00 3.56±0.04 1.58±0.03 4.08±0.09 1.72±0.03 4.06±0.41 1.74±0.10 4.01±0.27 1.70±0.06 2.70±0.30 1.38±0.09 3.57±0.18 1.62±0.04 2.62±0.17 1.34±0.08

E
T

T
m

1 96 0.63±0.03 0.57±0.01 0.63±0.02 0.57±0.01 0.59±0.03 0.55±0.02 0.55±0.03 0.53±0.01 0.64±0.01 0.56±0.00 0.63±0.02 0.58±0.01 0.63±0.03 0.57±0.02 0.43±0.00 0.44±0.00 0.55±0.03 0.53±0.02 0.40±0.00 0.42±0.00
192 0.80±0.04 0.67±0.02 0.79±0.07 0.67±0.03 0.80±0.08 0.66±0.04 0.74±0.06 0.65±0.03 0.68±0.01 0.59±0.01 0.84±0.06 0.69±0.02 0.80±0.03 0.68±0.02 0.54±0.02 0.51±0.00 0.67±0.04 0.59±0.02 0.49±0.00 0.48±0.00
336 1.15±0.07 0.84±0.03 1.00±0.06 0.77±0.03 0.98±0.04 0.76±0.03 0.99±0.07 0.77±0.03 0.87±0.14 0.70±0.06 0.90±0.07 0.73±0.04 1.15±0.06 0.84±0.02 0.65±0.03 0.57±0.02 0.90±0.02 0.72±0.01 0.63±0.03 0.56±0.01
720 1.13±0.04 0.81±0.00 1.08±0.07 0.79±0.02 1.06±0.04 0.79±0.03 1.18±0.02 0.82±0.00 1.01±0.10 0.75±0.05 1.23±0.12 0.86±0.04 1.13±0.04 0.81±0.01 0.83±0.03 0.66±0.01 0.93±0.10 0.72±0.04 0.76±0.04 0.63±0.02

E
T

T
m

2 96 0.42±0.06 0.51±0.04 0.39±0.02 0.48±0.02 0.39±0.02 0.48±0.01 0.39±0.03 0.49±0.03 0.40±0.08 0.48±0.05 0.33±0.03 0.43±0.03 0.42±0.05 0.51±0.04 0.30±0.03 0.39±0.01 0.33±0.06 0.42±0.04 0.29±0.03 0.39±0.03
192 0.78±0.09 0.68±0.03 0.78±0.09 0.68±0.04 0.88±0.20 0.72±0.10 0.71±0.05 0.65±0.01 0.54±0.04 0.55±0.03 0.63±0.11 0.60±0.05 0.77±0.07 0.67±0.03 0.42±0.00 0.49±0.01 0.59±0.01 0.59±0.01 0.43±0.02 0.50±0.01
336 1.52±0.07 0.95±0.02 1.43±0.08 0.92±0.02 1.39±0.18 0.91±0.07 1.40±0.06 0.91±0.03 1.29±0.04 0.88±0.02 1.45±0.12 0.93±0.05 1.57±0.10 0.96±0.03 0.94±0.19 0.74±0.07 1.29±0.11 0.88±0.03 0.81±0.03 0.69±0.01
720 3.46±0.27 1.42±0.08 4.37±0.29 1.64±0.08 4.79±0.03 1.65±0.01 3.27±0.30 1.38±0.08 3.25±0.35 1.35±0.07 3.13±0.71 1.36±0.17 3.48±0.27 1.43±0.08 2.65±0.47 1.20±0.10 3.77±0.38 1.51±0.10 2.79±0.25 1.27±0.04

E
xc

ha
ng

e 96 0.96±0.04 0.78±0.01 0.80±0.06 0.69±0.02 0.96±0.04 0.79±0.02 0.86±0.05 0.75±0.02 0.92±0.19 0.76±0.08 0.94±0.06 0.77±0.03 0.96±0.04 0.78±0.01 0.29±0.01 0.40±0.00 0.81±0.02 0.71±0.01 0.27±0.00 0.40±0.01
192 1.11±0.01 0.84±0.00 1.08±0.00 0.79±0.00 1.18±0.01 0.87±0.01 1.14±0.04 0.85±0.01 1.18±0.02 0.85±0.01 1.12±0.02 0.86±0.01 1.11±0.01 0.84±0.00 0.63±0.05 0.62±0.03 1.13±0.05 0.82±0.01 0.61±0.04 0.61±0.02
336 1.61±0.04 1.01±0.02 1.70±0.07 1.00±0.02 1.56±0.03 1.01±0.00 1.55±0.02 0.99±0.01 1.61±0.09 1.00±0.04 1.47±0.11 0.97±0.03 1.60±0.04 1.01±0.02 1.01±0.13 0.81±0.05 1.44±0.02 0.94±0.01 0.94±0.12 0.78±0.05
720 2.85±0.16 1.39±0.04 3.20±0.08 1.48±0.02 2.82±0.20 1.38±0.07 2.48±0.22 1.30±0.06 2.91±0.04 1.41±0.01 2.57±0.17 1.31±0.07 2.85±0.16 1.39±0.04 1.41±0.24 0.93±0.08 2.06±0.16 1.15±0.05 1.77±0.13 1.05±0.07
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Fig. 3: MSE and MAE for different down-sampling ratios.
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Fig. 4: Predictions on ETTm1 and Exchange with 192 hori-
zon. STAug predicts data that best align with the ground truth.

smaller than α = 0.05), so there exists a significant differ-
ence among different methods. The Wilcoxon-signed rank
test indicates the statistical significance of STAug compared
with all the baselines with p = 0.00 far below 0.05. We also
present qualitative comparisons in Figure 4. Compared with
the predictions by the base model and the best-performing
baseline for the corresponding setting, STAug forecasts val-
ues that better align with the original time series.

4.3. Ablation Study

To examine the effect of augmentation in different domains,
we also conduct ablation study by augmenting data only in the
frequency or time domain in Table 1. STAug-noFreq stands
for the model that removes frequency-domain augmentation,
and STAug-noTime stands for the model that removes time-
domain data augmentation. The performance degrades after

removing augmentation in either the frequency or time do-
main, validating the need of combining both domains.

4.4. Robustness Study

We sub-sample 10%, 20%, 50% of the Exchange dataset, and
compare STAug with the base model and the best-performing
baseline methods for the corresponding setting (horizon 96).
We report on MSE and MAE in Figure 3. The performances
of different methods increase as we have more data. When
the sample size is small, the performance gap between aug-
mentation methods and base model without augmentation be-
comes larger, which shows that augmentation is especially
helpful when the original dataset is small. STAug leverages
information from both time and frequency domains, and per-
forms consistently better with respect to the original sample
size. Moreover, STAug shows more significant improvement
over base model and the best-performing baselines with fewer
available samples in the original dataset, which demonstrates
its robustness with respect to the number of data samples.

5. CONCLUSION

We proposed a generic yet effective time-series data augmen-
tation method STAug to combine patterns in both the time
domain and frequency domain. In the frequency domain, the
re-combined subcompacts of the original time series are both
diverse and preserve the original basic components. In the
time domain, we adapt the mix-up strategy to generate di-
verse and in-between coherent samples by linearly interpolat-
ing both past and future part of a time series. Experiments on
five real-world time-series datasets show that STAug best re-
duces the forecasting errors of base model compared with ex-
isting augmentation methods. We also performed robustness
analysis and observed that STAug stays robust with respect
to sampling size. Our ongoing work in the area involves sys-
tematically studying the effectiveness of various time domain
and frequency domain augmentation methods, and designing
data-dependent selection procedure to choose the most suit-
able augmentation method for different datasets.
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