
Unleashing the Power of Shared Label Structures
for Human Activity Recognition

Xiyuan Zhang

University of California, San Diego

xiyuanzh@ucsd.edu

Ranak Roy Chowdhury

University of California, San Diego

rrchowdh@eng.ucsd.edu

Jiayun Zhang

University of California, San Diego

jiz069@ucsd.edu

Dezhi Hong
∗

Amazon

hondezhi@amazon.com

Rajesh K. Gupta

University of California, San Diego

rgupta@ucsd.edu

Jingbo Shang

University of California, San Diego

jshang@ucsd.edu

ABSTRACT
Current human activity recognition (HAR) techniques regard ac-

tivity labels as integer class IDs without explicitly modeling the

semantics of class labels. We observe that different activity names

often have shared structures. For example, “open door” and “open

fridge” both have “open” as the action; “kicking soccer ball” and

“playing tennis ball” both have “ball” as the object. Such shared

structures in label names can be translated to the similarity in sen-

sory data and modeling common structures would help uncover

knowledge across different activities, especially for activities with

limited samples. In this paper, we propose SHARE, a HAR frame-

work that takes into account shared structures of label names for

different activities. To exploit the shared structures, SHARE com-

prises an encoder for extracting features from input sensory time

series and a decoder for generating label names as a token sequence.

We also propose three label augmentation techniques to help the

model more effectively capture semantic structures across activi-

ties, including a basic token-level augmentation, and two enhanced

embedding-level and sequence-level augmentations utilizing the

capabilities of pre-trained models. SHARE outperforms state-of-the-

art HARmodels in extensive experiments on seven HAR benchmark

datasets. We also evaluate in few-shot learning and label imbalance

settings and observe even more significant performance gap.
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Figure 1: Existing HAR framework vs SHARE. SHARE ex-
ploits shared structures in label names and generates activity
name sequences as prediction, rather than predicting integer
class IDs. We also design three label augmentations at differ-
ent levels to better capture shared structures.
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1 INTRODUCTION
Sensor-based human activity recognition (HAR) identifies human

activities using sensor readings from wearable devices. HAR has a

variety of applications including healthcare, motion tracking, smart

home automation, human-computer interaction [5, 8, 18, 25, 30, 50].

For example, acceleration sensors attached to legs record subjects

walking around and performing daily activities for gait analysis for

Parkinson’s disease patients [2]; accelerometer and gyroscope can

monitor user postures to detect falls for elderly people [47].

While tremendously valuable, HAR data remain difficult to col-

lect due to security or privacy concerns, as human subjects involved

in the collection process may not consent to data sharing or data

transmission over the network. This often leads to local training at

the edge using limited samples from just a few human subjects. Ad-

ditionally, certain types of human activities happen less frequently

by nature, further complicating data collection.

We note that existing HAR methods treat labels simply as in-

teger class IDs and learn their semantics purely from annotated

sensor data. This is less effective especially when labeled data are

limited. To achieve better recognition performance, prior research

mostly is concentrated on designing better feature extraction mod-

ules [14, 24, 33, 36] while largely overlooking the advantages of

modeling label structures. Since sensory readings measuring hu-

man activities are time-series data, existing time-series classification

models are also applicable to HAR. These methods, however, are

also primarily focused on enhancing feature extraction [9, 12, 52]. It

is noteworthy that both HAR and time-series classification methods

in the literature miss the modeling of label name structures.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583780.3615101
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(b) T-SNE results of sensory data with the colors denoting different shared label structures.

Figure 2: (a) Labels in HAR datasets typically share common structures. (b) T-SNE visualization of sensory data in Opportunity
dataset [38]. Activities with the same actions or objects (marked by the same colors) are closer. Each point represents one data
sample, and each type of marker represents a different type of activity. The two figures have the same set of data points and
markers and only differ in colors. The same color represents common actions (left figure) or common objects (right figure).

We argue that a more effective approach to learning activity

semantics is through label namemodeling, as activity names inHAR

datasets often share structures that reflect the similarity between

different activities. For example, both “open door” and “open fridge”

(sharing the action “open”) involve pulling a (fridge) door around a

hinge (while “open door” first rotates the knob to release the lock

and “open fridge” directly pulls the handle); both “stairs up” and

“stairs down” (sharing the object “stairs”) need to bend the knees and

extend the legs. Figure 2a illustrates more examples of activity label

names in typical HAR datasets (e.g., “eat pasta” and “eat sandwich”,

“elevator up” and “elevator down”). The common actions or objects

in these examples translate to similarities in the IMU data space.

As shown in Figure 2b, we apply t-SNE visualization on sensor

readings from the Opportunity dataset [38]. We color different

activities by common actions or objects. Activities of the same

color (sharing the same action or object in label names) appear

closer in the embedding space, indicating stronger similarity in

the original sensory measurements. Such mapping between input

features and label names motivates us to design a more effective

learning framework that extracts knowledge from label structures.

To this end, we propose SHARE, shown in Figure 1, which mod-

els both input sensory data features and label name structures.

SHARE comprises an encoder for extracting features from sensory

input and a decoder for predicting label names. Unlike existing

HAR models that output integer class IDs as prediction results,

SHARE outputs label name sequences, thus preserving structures

among various activities and providing a global view of activity re-

lationships. During training, we optimize the model by minimizing

the differences between predicted label names and ground-truth

label names. During inference, we exploit a constrained decoding

method to produce only valid labels.

We also design three label augmentation methods at different

levels to better capture shared structures across activities. The ba-

sic token-level augmentation randomly replaces the original label

sequences by their meaningful tokens (e.g., all actions of “eat X”

are treated as a class of “eat”). This happens only during training

and helps the model consolidate semantics of shared structures

across different activities. We further develop two embedding- and

sequence-level augmentations leveraging pre-trained models. At

the embedding level, we integrate pre-trained word embeddings to

capture shared semantic meanings not obvious in label names (e.g.,

the similarity between “walk” and “run”). At the label sequence

level, for HAR datasets that do not have shared structures in their

original labels, we offer an automated label generation method to

generate new labels with shared tokens while preserving the same

semantic meanings, leveraging large language models. Specifically,

we use OpenAI’s GPT-4 [32] to extend atomic, non-overlapping

label names into sequences of meaningful tokens. To the best of

our knowledge, SHARE is the first solution to HAR classification

via decoding label sequences. We evaluate SHARE on seven HAR

benchmark datasets and observe the new state-of-the-art perfor-

mance. We summarize our main contributions as follows:

• We find shared structures in label names map to similarity in the

input data, leading to a more effective HAR framework, SHARE,

by modeling label structures. SHARE captures knowledge across

activities by uncovering information from label structures.

• We propose three label augmentation methods, each targeting

at a different level, to more effectively identify shared structures

across activities. These include a basic token-level augmenta-

tion and two pre-trained model-enhanced augmentations at the

embedding level and at the label sequence level.

• We evaluate SHARE on seven HAR benchmark datasets and

observe the new state-of-the-art performance. We also conduct

experiments under few-shot settings and label imbalance settings

and observe even more significant performance improvement.

2 RELATEDWORK
2.1 Human Activity Recognition
Existing HAR approaches can be categorized into statistical meth-

ods and deep learning-based methods [6, 56]. Traditional methods

are based on data dimensionality reduction, spectral feature trans-

formation (e.g., Fourier transformation), kernel embeddings [34],

first-order logic [51] or handcrafted statistical feature extraction

(e.g., mean, variance, maximum, minimum) [15]. These features

are then used as input to shallow machine learning methods like

SVM, and Random Forest. In recent years, deep learning methods

have advanced automatic feature extraction and have begun to

substitute hand-crafted feature engineering in HAR [14, 16, 50]
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, including convolutional neural networks, recurrent neural net-

work, attention mechanism, and their combinations. DeepConvL-

STM [33] is composed of convolutional layers for feature extrac-

tors and recurrent layers for capturing temporal dynamics of the

feature representations. MA-CNN [36] designs modality-specific ar-

chitecture to first learn sensor-specific information and then unify

different representations for activity recognition. SenseHAR [20]

proposes a sensor fusion model that maps raw sensory readings to

a virtual activity sensor, which is a shared low-dimensional latent

space. AttnSense [29] further integrates attention mechanism to

convolutional neural network and gated recurrent units network.

THAT [24] proposes a two-stream convolution augmented Trans-

former model for capturing range-based patterns. We shall note

that these models focus on designing more effective feature extrac-

tors for better performance but neglect the semantic information

in label names, which is the focus of this work.

2.2 Time-Series Classification
HAR data are time-stamped sensory series, enabling the use of

time-series classification methods. Existing time-series classifica-

tion models fall into two categories: statistical methods and deep

learning methods. Statistical methods are based on nearest neigh-

bor [3, 41], dictionary classifier [39], ensemble classifier [27, 40],

etc. These statistical methods are more robust to data scarcity but

do not scale well when the feature numbers in high-dimensional

space become huge. On the other hand, deep learning methods can

extract features from high-dimensional data but require abundant

data points to train an effective model.

Convolutional Networks (FCN and ResNet) [19, 45] and Recur-

rent Neural Networks [21, 22] show better performance compared

with statistical methods. TapNet [58] is an attentional prototype

network that calculates the distance to class prototypes to learn

feature representations. ShapeNet [26] performs shapelet selection

by embedding shapelet candidates into a unified space and trains

the network with cluster-wise triplet loss. SimTSC [53] formulates

time-series classification as a graph node classification problem

and uses a graph neural network to model similarity information.

Recently, Rocket [12] applies plenty of random convolution ker-

nels for data transformation and attains state-of-the-art accuracy.

MiniRocket [13] maintains the accuracy and improves the process-

ing time of Rocket. TST [52] and TARNet [10] incorporate unsu-

pervised representation learning which offers benefits over fully

supervised methods on the downstream classification tasks. Similar

to existing HAR methods, time-series classification models focus

on designing more advanced feature extraction or unsupervised

representation learning methods without taking into account the

label semantics, whereas SHARE models the shared structures in

the label set for more effective representation learning.

2.3 Label Semantics Modeling
Given label name semantics as prior knowledge, classification tasks

could benefit from modeling such semantics through knowledge

graph [43] or textual information [23, 35, 54, 59]. Tong et al. [42]

exploit knowledge from video action recognition models to con-

struct an informative semantic space that relates seen and unseen

activity classes. Recent works designed specifically for zero-shot

Algorithm 1: SHARE Framework

Input :Training set Dtr = {xi, yi}𝑁tr

𝑖=0
, test set

Dte = {xi, yi}𝑁te

𝑖=0
.

Model :Encoder 𝑓𝜃 , Decoder 𝑔𝜙 .
Output :Predicted label sequences on test set {ŷi}𝑁te

𝑖=0
.

1 if no shared tokens in Y then
2 Sequence-Level augmentation to Y ; // Sec 4.4

3 while not converge do
4 Sample (xi, yi) ∼ Dtr;

5 Token-Level augmentation y′i ← yi ; // Sec 4.3

6 Encoder feature extraction zi = 𝑓 (xi;𝜃 ) ; // Sec 4.1

7 Embedding-Level augmentation and label sequence

decoding ŷi = 𝑔(zi;𝜙) ; // Sec 4.2,4.4

8 Optimize 𝜃 and 𝜙 through Equation 4;

9 for (xi, yi) ∈ Dte do
10 Encoder feature extraction zi = 𝑓 (xi;𝜃 );
11 Embedding-Level augmentation and label sequence

constrained decoding ŷi = argmaxyi∈Y 𝑃𝜙 (yi |zi);

12 return predicted label sequences {ŷi}𝑁te

𝑖=0
.

learning in human activity recognition also combine semantic em-

beddings [31, 44, 49]. However, these works mostly calculate the

mean embeddings for labels with multiple words, which misses

label structures and is suboptimal. Unlike these works, SHARE

preserves label structures and enables knowledge sharing through

decoding label names for generic HAR.

3 PRELIMINARY
We focus on human activity recognition such as walking and sitting,

captured by the sensory time-series data in a given time period. We

formulate HAR settings of conventional methods and SHARE.

Conventional HAR. We denote HAR dataset in conventional

methods as D′ = {(xi, 𝑐𝑖 )}𝑁𝑖=0, xi ∼ X, 𝑐𝑖 ∼ C, where X and C
denote the input space and the label space. Each sample of time-

series input is denoted as xi ∈ R𝑇𝑖×𝑣 , where 𝑇𝑖 is the length of

the time series, and 𝑣 is the number of measured variables. The

label space C contains𝐶 classes, and each label 𝑐 is an integer from

{1, 2, · · · ,𝐶}.
SHARE. We denote dataset in SHARE as D = {(xi, yi)}𝑁𝑖=0, xi ∼
X, yi ∼ Y, where data space X is the same as conventional HAR

methods, and Y denotes the label space in SHARE. We denote

yi = [𝑦𝑖1, 𝑦𝑖2, · · · , 𝑦𝑖𝑘𝑖 ] as a sample human activity label sequence,

where𝑘𝑖 is the length of the label sequence yi. For example, the label

“walk upstairs” contains a word sequence of length two, [“walk”,

“upstairs”] respectively. The label space Y contains 𝐶 classes and

𝑀 tokens. Instead of presenting labels as independent integer IDs,

there exist shared structures across different labels in the label space

Y. For example, “walk upstairs” and “walk downstairs” both have

“walk” in label names. Formally, there exist labels yi, yj, 𝑖 ≠ 𝑗 that

have the same word 𝑦𝑖𝑚 = 𝑦 𝑗𝑙 , where 1 ≤ 𝑚 ≤ 𝑘𝑖 , 1 ≤ 𝑙 ≤ 𝑘 𝑗 are

positions in yi and yj.
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Figure 3: Framework of SHARE. We encode the time-series features and decode the label sequences as predictions. We further
design three augmentation methods at different levels to better capture the shared semantic structures.

4 METHODOLOGY
We design a label structure decoding architecture for HAR, called

SHARE, that exploits label structures and promotes knowledge

sharing across activities. SHARE consists of two modules: Time-

Series Encoder and Label Structure-Constrained Decoder. We pass

multivariate sensory readings as input to the encoder and use the

extracted feature vector to initialize the hidden states of the de-

coder. The decoder generates an activity name sequence (e.g., “climb

stairs”) as the prediction label. By binding sensory features with

label structures, the structures in label names help the model better

learn the similarity in the sensory data. We further propose three

augmentation methods, including one basic token-level augmenta-

tion (randomly selecting from “climb”, “stairs”, “climb stairs”) and

two pre-trained model-enhanced augmentations at embedding (us-

ing pre-trained embeddings to initialize “climb” and “stairs” word

embeddings) and label sequence levels (rephrasing “climb stairs” as

“leg up” which share more tokens with other label names), to better

capture shared structures across different activities. We summarize

the pipeline of SHARE in Figure 3 and Algorithm 1.

4.1 Time-Series Encoder
We use 𝑓𝜃 : X → Z ⊂ R𝑑 parameterized by 𝜃 to denote the

time-series encoder. This part appears in both conventional HAR

and SHARE. The encoder maps data from the input space X to the

𝑑-dimensional hidden space Z. For conventional HAR, the final

predictions are obtained from the hidden representations after a

fully connected layer fc. Denote 𝑐𝑖 = fc(𝑓 (xi;𝜃 )) ∈ R𝐶 as the

distribution of the predicted label. Optimization is based on the

cross-entropy loss between prediction 𝑐𝑖 and ground truth 𝑐𝑖 :

argminE(xi,𝑐𝑖 )∼D′CE(𝑐𝑖 , 𝑐𝑖 ) . (1)

In SHARE, the encoded representations zi = 𝑓 (xi;𝜃 ) are used to

initialize hidden states of the decoder, instead of being directly used

for classification. This transfers learned representations from the

encoder to inform the structured decoding process. To instantiate

the time-series encoder, we keep both efficacy and efficiency in

mind, given that HAR models usually run on edge devices with

limited compute. Therefore, we use one-dimensional Convolutional

Neural Networks (CNN), as they are relatively lightweight with

superior capability in extracting time-series features [11, 36, 45, 57].

4.2 Label Structure-Constrained Decoder
We use 𝑔𝜙 : Z → Y parameterized by 𝜙 to denote the label

structure-constrained decoder in SHARE. The decoder generates

word sequences in the label space Y given the encoded representa-

tions as initialization of the decoder hidden states. Following our

notation in Section 3 (Problem Setting), we further require that

each label name sequence starts from a start token 〈𝑠〉 and ends at

an ending token 〈𝑒〉. Specifically, yi = [𝑦𝑖0, 𝑦𝑖1, 𝑦𝑖2, · · · , 𝑦𝑖𝑘𝑖 , 𝑦𝑖𝑘𝑖+1],
where 𝑦𝑖0 = 〈𝑠〉, 𝑦𝑖𝑘+1 = 〈𝑒〉. Decoding the token 〈𝑒〉 means that

we reach the end of the label sequence. At each decoding step, we

estimate the conditional probability 𝑃𝜙 of decoding label yi from
xi, given the encoded representations zi from the encoder as:

𝑃𝜙 (𝑦𝑖1, 𝑦𝑖2, · · · , 𝑦𝑖𝑘𝑖+1 |zi) =
∏𝑘𝑖+1

𝑡=1
𝑃𝜙 (𝑦𝑖𝑡 |zi, 𝑦𝑖0, 𝑦𝑖1, · · · , 𝑦𝑖𝑡−1) . (2)

Training. During the training of SHARE, we adopt the teacher

forcing strategy [48] where the ground truth label token 𝑦𝑖𝑡 at each

decoding step 𝑡 is used as input to be conditioned on for predictions

at decoding step 𝑡 + 1. Teacher forcing improves convergence speed

and stability during training. We optimize SHARE based on cross-

entropy loss between the predicted label sequence ŷi and the ground
truth label sequence yi:

ŷi = 𝑔(𝑓 (xi;𝜃 );𝜙), (3)

argminE(xi,yi )∼D
1

𝑘𝑖

𝑘𝑖∑︁
𝑗=1

CE(𝑦𝑖 𝑗 , 𝑦𝑖 𝑗 ), (4)

where 𝑦𝑖 𝑗 ∈ R𝑀 indicates distribution of 𝑗th predicted token of ŷi.
Inference with Constrained Decoding. During inference decod-

ing, predicted label token 𝑦𝑖𝑡 from the current decoding step 𝑡 is

used as input to be conditioned on for predicting tokens at step

𝑡 + 1. In typical natural language processing tasks, e.g., machine

translation, it is common to decode the sequence using beam search

during inference. However, beam search would not work properly

as it only tracks a pre-defined number of best partial solutions as

candidates in decoding, and the final predictions may not belong to

our label space. To guarantee that all generated labels are valid, we

adopt a constrained decoding method. We start from the start token

and iterate over all valid label sequences in the label set. We then

calculate the probability of decoding each valid label sequence and

choose the one with the highest probability as the final predicted

label. The decoding is constrained as we only keep track of the valid

partial sequences during decoding. In HAR datasets, the size of the
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label set is relatively small, and constrained decoding consumes

only a small constant of memory (the size of the label set). At step

𝑡 , we calculate the probability for all the valid partial sequences

of length 𝑡 and pass them into the decoder for generating tokens

at step 𝑡 + 1. The final inference prediction is the sequence that

maximizes the overall sequence probability:

ŷi = argmax

yi∈Y
𝑃𝜙 (yi |zi) . (5)

We use Long Short-Term Memory (LSTM) as an example for our

label structure-constrained decoder, given its effectiveness inmodel-

ing sequential dependencies [33]. We transform the CNN-extracted

features zi through two separate linear layers to initialize the hidden
state and cell state of LSTM.

4.3 Basic Token-Level Label Augmentation
To better learn the semantics of each token in the label sequence, we

apply a token-level label augmentation strategy as illustrated in Fig-

ure 4. During training, with pre-defined probability, we randomly

choose meaningful single words from the original label sequence

as the new labels. For example, an original label sequence “ascend-

ing stairs” contains single words “ascending” and “stairs”, so we

randomly select from “ascending”, “stairs”, and “ascending stairs”

as the new labels during training. Following notation in Section 3

(Problem Setting), the original label yi = [𝑦𝑖1, 𝑦𝑖2, · · · , 𝑦𝑖𝑘𝑖 ] is aug-
mented as a set of new labels {yi, 𝑦𝑖1, 𝑦𝑖2, · · · , 𝑦𝑖𝑘𝑖 } containing the

label sequence yi and its meaningful tokens. For each iteration,

with a pre-defined probability we randomly select the new label

y′i from the new label set as the actual label. Optimization with

token-level label augmentation can be formulated as:

argminE(xi,yi )∼𝐷Ey′i∼{yi,𝑦𝑖1,𝑦𝑖2,· · · ,𝑦𝑖𝑘𝑖 }
1

𝑘′
𝑖

𝑘 ′𝑖∑︁
𝑗=1

CE(𝑦′𝑖 𝑗 , 𝑦𝑖 𝑗 ), (6)

where 𝑘′
𝑖
is the length of the new label y′i , 𝑦

′
𝑖 𝑗
is the 𝑗th token of

y′i , and 𝑦𝑖 𝑗 is the distribution of the predicted 𝑗th token. Since the

goal of label augmentation is to help the model better capture the

semantics of different activities, we only choose meaningful single

tokens in the original label sequences (e.g., actions and objects) as

new labels. Other single tokens like stop words or numbers (e.g.,

“1” in “open door 1”) will not count as new labels. Note that the

token-level augmentation is only applied during training. During

evaluation, the ground truth label stays the same as the original

label. Because we adopt a constrained decoding method during

inference, it is guaranteed that all the generated label sequences

are valid sequences in the original label sets.

(a) Data (b) ImageBind Embeddings

Figure 5: T-SNE visualizations show analogous clusters be-
tween input data and ImageBindword embeddings. Activities
in the same color represent clusters of similar activities.

4.4 Enhanced Embedding-Level and
Sequence-Level Augmentations

Apart from the basic token-level augmentation, we also develop

two enhanced augmentation techniques to better capture label

structures from embedding and sequence levels by leveraging the

power of pre-trained models.

Embedding-Level Augmentation. Our label structure decod-

ing architecture can capture label structures explicitly presented

as shared label names. Yet, apart from these explicit shared label

names, there may also exist semantic structures that implicitly

span across different activities. For example, “walk” and “run” are

similar activities involving the movement of legs, but they don’t

directly share label names. We have observed that such semantic

structures can be captured by word embeddings from pre-trained

models. We thus propose to use word embeddings from pre-trained

models to initialize our decoder’s word embedding layer, replac-

ing the original random initialization. Specifically, we utilize word

embeddings from ImageBind, a multimodal pre-trained model that

learns a joint embedding space across six modalities. As shown

in Figure 5, we apply t-SNE visualization to both the ImageBind

word embeddings and the input sensor readings from some example

activities in PAMAP dataset [37]. For activity names comprising

multiple tokens, we calculate the average embedding of the aggre-

gated tokens. T-SNE visualizations show similar clusters between

ImageBind word embeddings and original data embeddings. As a

result, incorporating pre-trained word embeddings helps SHARE

better capture semantic structures.

Sequence-Level Augmentation.Most HAR datasets have suffi-

cient overlapping structures in label names. However, there also

exist datasets that do not have or rarely have shared tokens in their

original label names. For these datasets, we can use large-scale lan-

guage models to automatically generate label names with shared

tokens. Specifically, we employ GPT-4 with the following prompt:

Describe the following activities one by one with information of
1. body part used, 2. action or adverb, 3. object (if involved). Please
maximize the number of shared tokens across different activities and
make the description as short as possible.

As human activities naturally have shared actions and objects,

the prompt helps find common tokens across activities. With the

aid of pre-trained language model, such a process is performed with

minimal human expert effort. Based on the structured information

provided by the pre-trained model, we can summarize the label

names with shared tokens. We apply sequence-level augmentation

mostly for datasets without original shared tokens. If the target
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Table 1: Dataset statistics and an example subset of shared label names.

Dataset Train Test Window Size Channel Class Num An Example Subset of Shared Label Names

Opportunity [38] 2891 235 150 45 17 open door, open drawer, close drawer, open fridge, open dishwasher

PAMAP2 [37] 14438 2380 512 27 12 ascending stairs, descending stairs, walking, nordic walking

UCI-HAR [1] 7352 2947 128 9 6 walk, walk upstairs, walk downstairs

USCHAD [55] 17576 9769 100 6 12 run forward, walk forward, elevator up, elevator down, jump up

WISDM [46] 12406 3045 200 6 18 eating soup, eating pasta, kicking soccer ball, playing tennis ball

Harth [28] 14166 3588 300 6 12 sitting, standing, cycling sitting, cycling standing, cycling sitting inactive

Table 2: Accuracy and Macro-F1 for SHARE and baselines. We bold the best score and underline the second best.

Datasets Metrics DeepConvLSTM [33] XGBoost [7] MA-CNN [36] HHAR-net [14] TST [52] TARNet [10] Rocket [12] THAT [24] SHARE

Opp

Accuracy 0.746±0.049 0.688±0.017 0.549±0.029 0.753±0.027 0.784±0.018 0.789±0.024 0.811±0.008 0.803±0.012 0.849±0.015
Macro-F1 0.634±0.036 0.547±0.011 0.416±0.036 0.620±0.021 0.668±0.023 0.669±0.034 0.670±0.016 0.691±0.015 0.766±0.013

PAMAP2

Accuracy 0.891±0.012 0.939±0.003 0.926±0.011 0.885±0.031 0.922±0.037 0.931±0.011 0.928±0.008 0.943±0.005 0.960±0.002
Macro-F1 0.884±0.018 0.939±0.007 0.925±0.012 0.893±0.031 0.925±0.039 0.935±0.010 0.934±0.008 0.949±0.005 0.965±0.002

UCI-HAR

Accuracy 0.900±0.016 0.907±0.003 0.921±0.025 0.926±0.005 0.926±0.005 0.904±0.011 0.939±0.002 0.906±0.007 0.960±0.002
Macro-F1 0.899±0.016 0.906±0.003 0.921±0.024 0.926±0.005 0.925±0.006 0.904±0.011 0.942±0.002 0.909±0.006 0.959±0.002

USCHAD

Accuracy 0.574±0.016 0.571±0.007 0.543±0.044 0.524±0.011 0.641±0.028 0.564±0.037 0.580±0.005 0.643±0.015 0.674±0.041
Macro-F1 0.557±0.015 0.573±0.006 0.520±0.047 0.523±0.009 0.594±0.023 0.533±0.021 0.601±0.007 0.619±0.012 0.627±0.027

WISDM

Accuracy 0.689±0.014 0.668±0.005 0.634±0.059 0.566±0.016 0.715±0.003 0.733±0.011 0.643±0.007 0.774±0.005 0.794±0.003
Macro-F1 0.685±0.013 0.662±0.006 0.631±0.060 0.538±0.012 0.710±0.004 0.737±0.010 0.767±0.004 0.634±0.005 0.790±0.004

Harth

Accuracy 0.979±0.006 0.977±0.001 0.973±0.016 0.981±0.001 0.974±0.005 0.962±0.009 0.897±0.003 0.960±0.016 0.983±0.007
Macro-F1 0.578±0.032 0.522±0.003 0.538±0.025 0.515±0.049 0.501±0.031 0.481±0.031 0.472±0.019 0.485±0.025 0.593±0.020

HAR dataset already has sufficient overlapping tokens, we will

directly use the original label names provided by human experts.

5 EVALUATION
5.1 Datasets, Baselines, and Metrics
We use six HAR benchmark datasets for evaluation, summarized

in Table 1 with examples of shared label names. We split data and

choose window size following previous works [10, 20]. The training

and testing split is based on different participating subjects.

Opportunity1 [38] collects readings from 4 users with 6 runs per

user. Sensors include body-worn, object, and ambient sensors. The

full dataset includes annotations on multiple levels, and we use mid-

level gesture annotations which contain shared label structures.

PAMAP22 [37] comprises readings collected from 9 subjects wear-

ing 3 IMUs sampled at 100 Hz and a heart rate monitor sampled

at 9Hz. Three IMUs are positioned over the wrist on the dominant

arm, on the chest, and on the dominant side’s ankle, respectively.

UCI-HAR3
[1] is collected from a group of 30 volunteers. A Sam-

sung Galaxy S II smartphone was attached on their waist. Feature

vectors were further extracted from each sliding window of the

collected data in the time and frequency domain.

USCHAD4
[55] involves 14 subjects performing 12 low-level ac-

tivities. They use MotionNode (6-DOF IMU designed for human

motion sensing applications) to collect the datasets.

WISDM5
[46] is collected from accelerometer and gyroscope sen-

sors in smartphone and smartwatch at a rate of 20Hz. 51 subjects

perform 18 activities for 3 minutes respectively.

1
https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition

2
http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring

3
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+

Smartphones

4
https://sipi.usc.edu/had/

5
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+

Activity+and+Biometrics+Dataset+

Harth6 [28] involves 22 subjects using two three-axial accelerom-

eters attached to the thigh and lower back, and a chest-mounted

camera (for data annotation) to collect data of 12 activities.

We compare SHARE with a list of human activity recognition

(DeepConvLSTM [33], MA-CNN [36], HHAR-net [14], THAT [24])

and time-series classification baselines (XGBoost [7], Rocket [12],

TST [52], TARNet [10]), including both statistical approaches and

state-of-the-art deep learning-based models.

We evaluate the performance of SHARE and baselines using ac-

curacy and macro-F1. Macro-F1 is defined as macro-F1= 1

𝐶

∑𝐶
𝑖=1 2×

Preci×Reci
Preci+Reci , where Preci, Reci represent the precision and recall for

each category 𝑖 , and 𝐶 is the total number of categories.

5.2 Experimental Setup
We use a two-layer convolutional neural network as the encoder for

extracting features. The kernel sizes for both layers are set to 3 and

each layer is followed by batch normalization. We adopt LSTMwith

a hidden dimension of 128 as the decoder, based on a grid search

of {64, 128, 256}. We use Adam optimizer with learning rate 1𝑒−4

based on a grid search of {1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2} and batch size 16.

For all datasets, we further randomly split the training set into 80%

for training and 20% for validation. We conduct the experiments

in Pytorch with NVIDIA RTX A6000 (with 48GB memory), AMD

EPYC 7452 32-Core Processor, and Ubuntu 18.04.5 LTS. We tune the

hyper-parameters of both SHARE and baselines on the validation

set and then combine training and validation set to re-train the

models after hyper-parameter tuning.

5.3 Results
We repeat 5 runs and report the average accuracy, macro-F1 score,

and standard deviations of SHARE and baselines in Table 2. We

see that SHARE consistently outperforms both statistical and deep

6
https://github.com/ntnu-ai-lab/harth-ml-experiments

https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://sipi.usc.edu/had/
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
https://github.com/ntnu-ai-lab/harth-ml-experiments
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Table 3: Accuracy and Macro-F1 for different model variants. We bold the best score and underline the second best.

Datasets Metrics

VanillaHAR VanillaHAR+

multi label no aug no token aug no embed aug best baseline SHARE

no label modeling ImageBind

Opp

Accuracy 0.745±0.015 0.759±0.010 0.755±0.030 0.819±0.005 0.823±0.022 0.847±0.015 0.811±0.008 0.849±0.015
Macro-F1 0.618±0.023 0.632±0.009 0.624±0.034 0.732±0.014 0.737±0.019 0.741±0.029 0.691±0.015 0.766±0.013

PAMAP2

Accuracy 0.921±0.033 0.933±0.011 0.926±0.011 0.951±0.006 0.952±0.005 0.956±0.008 0.943±0.005 0.960±0.002
Macro-F1 0.924±0.024 0.938±0.014 0.928±0.010 0.960±0.006 0.958±0.005 0.964±0.009 0.949±0.005 0.965±0.002

UCI-HAR

Accuracy 0.921±0.005 0.928±0.005 0.926±0.005 0.954±0.006 0.957±0.004 0.958±0.004 0.939±0.002 0.960±0.002
Macro-F1 0.921±0.005 0.928±0.005 0.926±0.005 0.953±0.006 0.957±0.004 0.958±0.004 0.942±0.002 0.959±0.002

USCHAD

Accuracy 0.543±0.028 0.566±0.013 0.550±0.023 0.622±0.050 0.635±0.034 0.663±0.012 0.643±0.015 0.674±0.041
Macro-F1 0.538±0.024 0.558±0.012 0.546±0.016 0.600±0.029 0.615±0.023 0.623±0.011 0.619±0.012 0.627±0.027

WISDM

Accuracy 0.644±0.006 0.655±0.004 0.649±0.010 0.788±0.006 0.786±0.008 0.793±0.008 0.774±0.005 0.794±0.003
Macro-F1 0.639±0.006 0.648±0.003 0.645±0.012 0.783±0.008 0.784±0.008 0.786±0.009 0.767±0.004 0.790±0.004

Harth

Accuracy 0.977±0.005 0.980±0.002 0.979±0.007 0.981±0.006 0.975±0.008 0.982±0.003 0.981±0.001 0.983±0.007
Macro-F1 0.481±0.004 0.487±0.014 0.482±0.005 0.566±0.034 0.591±0.043 0.583±0.023 0.578±0.032 0.593±0.020

Table 4: Accuracy and Macro-F1 on Mhealth dataset. We bold the best score and underline the second best.

Datasets Metrics DeepConvLSTM [33] XGBoost [7] MA-CNN [36] HHAR-net [14] TST [52] TARNet [10] Rocket [12] THAT [24] SHARE

Mhealth

Accuracy 0.868±0.023 0.809±0.011 0.839±0.010 0.854±0.020 0.863±0.007 0.895±0.042 0.902±0.006 0.907±0.019 0.975±0.014
Macro-F1 0.871±0.023 0.775±0.023 0.834±0.009 0.811±0.022 0.863±0.007 0.892±0.039 0.908±0.007 0.910±0.017 0.974±0.013

Table 5: Different model variants on Mhealth dataset. We
bold the best score and underline the second best.

Datasets Metrics no token aug no embed aug no seq aug SHARE

Mhealth

Accuracy 0.968±0.027 0.949±0.019 0.908±0.008 0.975±0.014
Macro-F1 0.969±0.027 0.949±0.021 0.905±0.012 0.974±0.013

Table 6: Original/generated label names for Mhealth data.

Original Label Names Generated Label Names

standing still leg still

sitting and relaxing buttocks still

lying down back down

walking leg walk

climbing stairs leg up

waist bends forward back forward

frontals elevation of arms arm up

knees bending (crouching) leg forward

cycling leg cycle

jogging leg jog

running leg jog fast

jump front and back leg jump

learning-based human activity recognition and time-series classifi-

cation approaches, in terms of both accuracy and macro-F1 score.

SHARE reduces the error rate (i.e., 1 - accuracy) on six datasets

by approximately 20%, 30%, 34%, 9%, 9%, 11% compared with each

dataset’s best-performing baseline. Compared with the hierarchi-

cal baseline HHAR-net which models activities in a simple 2-layer

hierarchical model, SHARE can model much more complex de-

pendencies not necessarily in a hierarchical structure (e.g., “open

door”, “open drawer”, “close drawer” with pairwise overlap, form-

ing a graph rather than tree structure), without the cost of manual

labeling from experts. TST and TARNet leverage unsupervised rep-

resentation learning to boost classification performance. However,

they do not explicitly take account of label structures to model

relations across different activities. Other top-performing HAR or

time-series classification methods, such as Rocket and THAT, pro-

pose better feature extractors to improve recognition performance,

but they also neglect the label name structures. SHARE is capable

of leveraging the inherent shared structures in label names, leading

to the highest accuracy and macro-F1 score.

To assess the statistical significance of the performance differ-

ences between SHARE and the baselines, we applied the Wilcoxon-

signed rank test with Holm’s 𝛼 (5%) following the procedures de-

scribed in ShapeNet [17, 26]. The Wilcoxon-signed rank test indi-

cates that the improvement of SHARE compared with all the base-

lines is statistically significant with 𝑝 far below 0.05 (e.g., 𝑝 = 5𝑒−4

for the best-performing baseline THAT).

5.4 Model Variants
We also compare SHARE with some of its variants to examine the

source of the performance gain. For all variants, we use the same

encoder for feature extraction as SHARE.

• VanillaHAR: We use the same encoder as SHARE to extract

features embedded in the data, and directly append a linear layer

for classification without label name modeling.

• VanillaHAR + ImageBind embeddings: We also try directly

incorporating ImageBind embeddings into VanillaHAR. This vari-

ant has two separate linear branches at the end. One branch is for

classifying the labels, and the other branch predicts embeddings

for the label names. During training, apart from the classification

cross-entropy loss, we maximize the cosine similarity between

the predicted embeddings and the pre-trained ImageBind embed-

dings. If the label names have multiple words, we use the average

ImageBind embedding of each word as the embedding for the

entire label name sequence.

• multi-label classification: We also try two separate classifiers

subsequent to the encoder. The first classifier predicts the original

labels, and the second operates as a multi-label classifier that esti-

mates individual tokens within the label sequences. For example,

to predict the class “walk forward”, the second classifier labels

“walk” and “forward” as positive and other tokens as negative.
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Figure 6: Macro-F1 of SHARE, VanillaHAR and best-performing baselines with reduced training samples and window size.
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Figure 7: Macro-F1 of example activities with shared label
names for SHARE and VanillaHAR on Opportunity dataset
with long-tail label distribution.

Classification of shared tokens helps learn dependencies across

activities, and during testing, we only compare scores from the

first classifier for original activity classes.

• no aug: We stay with the label structure decoding architecture

but remove all three label augmentations.

• no token aug: We stay with the label structure decoding archi-

tecture but remove token-level augmentation during training.

• no embed aug: We randomly initialize the decoder word em-

bedding layer instead of using ImageBind word embeddings.

• no seq aug: The Mhealth dataset [4] (publicly available at UCI

Machine Learning Repository
7
) rarely has shared tokens in its

original label names. We compare the performance of SHARE on

its original non-overlapping label names and pre-trained model-

augmented shared label names.

As shown in Table 3, we observe significant improvement from

only applying a feature encoder to the proposed label structure

architecture that decodes label names. Regressing label name em-

beddings by optimizing a cosine similarity loss with ImageBind

embeddings only slightly improves the performance. This demon-

strates that directly incorporating word embeddings does not ex-

plicitly take into account the shared label name structures and

loses information when aggregating multiple words into a single

label embedding. By contrast, SHARE generates label sequences

which preserves the label structures and encourages knowledge

sharing across activities. Compared with multi-label classification,

our label structure decoding approach can preserve the word order

(especially for multi-gram) and word correlation in label sequence.

7
http://archive.ics.uci.edu/ml/datasets/mhealth+dataset

Moreover, the performances degrade after removing either token-

level or embedding-level augmentation (or removing both), which

validates their importance in capturing shared word semantics. For

sequence-level augmentation, we summarize the original and gener-

ated label names from pre-trainedmodel (GPT-4) in Table 6.We com-

pare SHARE using generated label names against both baselines (Ta-

ble 4) and our model variants (Table 5) on the Mhealth dataset. With

the help of the automated label generation method, SHARE demon-

strates state-of-the-art performance for HAR datasets without orig-

inal shared label names. Moreover, we observe that sequence-level

augmentation and embedding-level augmentation serve as comple-

mentary strategies that synergistically enhance performance.

5.5 Few-Shot Settings
We further evaluate SHARE under various few-shot settings.

Reduced Training Samples. We randomly reduce the number of

samples in the training set from two HAR datasets (Opportunity

and UCI-HAR) to 20%, 40%, 60%, and 80%, and evaluate the macro-

F1 on the same original test set. We conducted the experiments

for 5 runs and report both average Macro-F1 as well as standard

deviation. Figure 6a illustrates the performance trend of SHARE,

VanillaHAR as well as the best-performing baselines when we vary

the size of the training set. As we could observe from the figure, the

macro-F1 generally increases as the number of available training

samples increases. On top of that, the performance gap between

SHARE and other methods becomes larger when there are fewer

training data available, showing that decoding label names helps

learn the common structures that are shared across different classes.

Label Imbalance. The above experiment reduces training sam-

ples for all the classes. Many HAR datasets also naturally have a

long-tail distribution where some activities have fewer samples as

being more difficult to collect. We also experiment under such label

imbalance scenarios as shown in Figure 7. We compare SHARE and

the vanilla classification model VanillaHAR by visualizing exam-

ple activities with shared tokens. The activity names are sorted

in decreasing order by the label percentage in the dataset. The

performance grows significantly when adopting the label struc-

ture decoding architecture, as decoding label names helps transfer

the shared word semantics to those classes with fewer available

samples. For example, for the tail classes “open drawer 1”, “close

drawer 1”, “open drawer 2”, VanillaHAR shows a low F1 score (even

zero for “close drawer 1”), while SHARE substantially improves the

http://archive.ics.uci.edu/ml/datasets/mhealth+dataset
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Opportunity SemanticHAR Opportunity vanilla

Harth SemanticHAR Harth vanilla

(a) VanillaHAR Opportunity SemanticHAR Opportunity vanilla

Harth SemanticHAR Harth vanilla

(b) SHARE

Figure 8: Confusion matrix of VanillaHAR and SHARE on
Opportunity dataset. SHARE better discriminates different
activities, exemplified by classes with red squares.

(a) VanillaHAR (b) SHARE

Figure 9: T-SNE visualization on feature space. SHARE better
preserves the semantics in the feature space.

performance on these classes, as SHARE is able to leverage label

structures to learn from other classes.

Reduced Window Size.We also reduce the sampling frequency

(window size) on both training and test sets by a factor of 2,4,8

and report the performance of SHARE, VanillaHAR as well as the

best-performing baselines in Figure 6b. SHARE also stays robust

with respect to down-sampling factors, as it encourages knowl-

edge transfer via modeling label name structures. We observe that

our proposed SHARE consistently outperforms VanillaHAR and

baselines under different down-sampling factors.

5.6 Case Study
In this section, we further explore the benefits of modeling label

structures through some case studies.

ConfusionMatrix.We use Opportunity dataset as an example and

show through the confusion matrix in Figure 8 that SHARE better

discriminates activities compared with VanillaHAR, especially for

activities with fewer samples. In Figure 8, values at the 𝑖-th row and

𝑗-th column represent the number of instances that have ground

truth label 𝑖 and are predicted as label 𝑗 . “open drawer 1” instances

mispredicted as “close drawer 1” are reduced from 2 to 0, and the

correctly predicted instances increase from 1 to 4.

Feature Embedding. We apply t-SNE visualization to the feature

space of VanillaHAR and SHARE on the WISDM dataset. We visu-

alize the average feature of each activity, as illustrated in Figure 9.

VanillaHAR loses the semantic information in the feature space.

For example, “eating soup” is positioned at a large distance from

other “eating”-related activities. By contrast, SHARE preserves the

label structures in the feature space, indicating a more coherent

and precise mapping of related activities.

Table 7: Model complexity analysis.

Model # of Params Model Size Avg Running Time Per Batch

TST 1.195M 4.786MB 0.014s

TARNet 0.310M 2.465MB 0.016s

THAT 3.207M 12.828MB 0.018s

SHARE 0.219M 0.878MB 0.003s

5.7 Complexity Analysis
We compare themodel complexity of SHARE and the best-performing

deep models TST, TARNet and THAT on PAMAP2 data. Specifically,

we compute the number of parameters, the model size (number of

bytes required to store the parameters in the model), and the aver-

age running time for a batch of 16 samples (averaged over 10000

runs). We conducted the complexity analysis on a single NVIDIA

RTX A6000 48G GPU. For TST, we only compare the complexity

for the supervised fine-tuning phase. As shown in Table 7, SHARE

has the smallest number of parameters, model size, and average

running time, while outperforming more complex deep models.

6 CONCLUSION
We proposed a novel HAR approach, SHARE, that explicitly models

the semantic structure of class labels and classifies the activities by

decoding label sequence. SHARE enables knowledge sharing across

different activity types via label name modeling and alleviates the

challenges of annotated data shortage in HAR, compared with con-

ventional methods that treat labels simply as integer IDs. We also

design three label augmentation techniques, at token, embedding

and sequence levels, to help the model better capture semantic

structures across activities. We evaluated SHARE on seven HAR

benchmark datasets, and the results demonstrate that our model

outperforms state-of-the-art methods.

In the future, we plan to adapt our design to more complex

backbone models, as well as image-based or video-based human

activity recognition. We also plan to experiment on other types of

datasets that also have shared label name structures , e.g., medical

datasets with shared disease names. Also, in this work, we assumed

that the shared label name structures very likely imply similarity

in activity types. However, the assumption may not hold when

we extend the problem scope to simultaneously handling multiple

datasets where the same label names may correspond to slightly

different data collection settings. We believe further investigation

to lift such an assumption will offer meaningful insights.
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