Physics-Informed Machine Learning for Real-Time Sensing Systems

Xiyuan Zhang, Xiaohan Fu, Diyan Teng, Chengyu Dong, Keerthivasan Vijayakumar, Jiayun Zhang, Ranak Roy Chowdhury, Junsheng Han, Dezhi Hong, Rashmi Kulkarni, Jingbo Shang, Rajesh Gupta

> University of California, San Diego Qualcomm

Outline

- Motivation
- Method
- Experiments
- Conclusion

Outline

Motivation

- Method
- Experiments
- Conclusion

- Sensors measuring real-life physical processes play a critical role in acquiring data for downstream pattern recognition or decision making
- Challenge: noisy measurements degrade data quality
 - Environmental interference
 - Electrical fluctuation
 - Imprecision of the sensors

Limitation

- Traditional filtering methods
 - rely on prior knowledge of signal characteristics
- Supervised machine learning methods
 - assume availability of ground truth clean data
- Unsupervised machine learning methods
 - make simplified assumptions on noise/signal distributions

Key Observation

- Different variables of sensor data often have correlations that can be characterized by physics equations
 - Motion law: location, acceleration
 - Ohm's law: voltage, current
 - Ideal gas law: pressure, temperature
 - And more!

Key Observation

- Key observation: Such physics-based constraints among measured channels can be used to make the learning process of denoising easier
- Example: Regions with higher noise level in the orientation data map to regions with large misalignment of physics equations

Noisy orientation

Physics Equation Misalignment

Key Contributions

- The first Physics-Informed Learning for denOising Technology (PILOT) that supports practical sensing applications
 - Inertial navigation
 - CO₂ monitoring
 - HVAC control system
- State-of-the-art denoising performance with real-world deployment

Outline

- Motivation
- Method
- Experiments
- Conclusion

Example - Inertial Navigation

- Data collection
 - Camera: position/orientation
 - IMU: angular velocity/acceleration

Example - Inertial Navigation

- Manually add noise to position and orientation
- Conditional denoising autoencoder (4 convolutional layers)
- Reconstruction loss $L_{rec} = ||(\text{Reconstructed } p, q) (p, q)||^2$

Example - Inertial Navigation

- Physics modeling: compute 1st and 2nd order derivatives of reconstructed orientation and positions
- Physics loss $L_{phy} = ||(\text{Derived } w, a) (\text{IMU } w, a)||^2$

General Framework

- Phase 1: reconstruction loss as warm-up phase
- Phase 2: reconstruction loss + physics loss

More Applications

• Inertial navigation

$$g_{1}(a, p, q) = a - R_{q}^{T} \left(\frac{d^{2}p}{dt^{2}} - g_{0}\right)$$

$$g_{2}(w, q) = \frac{dq}{dt} - \frac{1}{2}q \otimes w$$
Inertial Navigation
Angular Velocity w
Orientation q
Acceleration a
Location p

More Applications

Inertial navigation •

 c_t

Cout

Air Outflow

CO2 Sensor

 $n_t q$

More Applications

Outline

- Motivation
- Method
- Experiments
- Conclusion

Datasets

- Inertial navigation: public OxIOD dataset
- CO₂ monitoring: deployment in lab
- HVAC control: deployment on campus

 CO_2 Desk

 $\rm CO_2$ Vent

IMU + Vicon

HVAC ΔQ

HVAC ΔT

Metrics

- Three perspectives to evaluate the performance
 - Reconstruction performance
 - High quality data collected from other sources as approximate ground truth clean data
 - Visualizations
 - Physics alignment: how well the denoised data align with physics
 - Performance of downstream task based on the denoised data

Inertial Navigation

- Reconstruction performance
 - Visualizations (top: best baseline, bottom: PILOT)

Inertial Navigation

• Physics alignment (left: original noisy, middle: best baseline, right: PILOT)

Model	Acceleration (m/s ²)		Angular V	Angular Velocity (rad/s)		
Metrics	MSE	MAE	MSE	MAE		
Original	762.6	3.7862	2.6219	0.2376		
Gaussian	363.2	3.2295	1.6277	0.2161		
DWT	854.9	5.4534	2.6034	0.2701		
DnCNN	312.5	8.3830	0.3470	0.1896		
TSTNN	3272.0	30.513	0.4184	0.4836		
DIP	2153.6	33.938	0.3788	0.4013		
N2N	118.7	4.5749	0.3565	0.1756		
PILOT	1.8695	0.6372	0.0380	0.0690		

Angular Velocity from IMU vs 1st-order Derivative from Orientation

Acceleration from IMU vs 2nd-order Derivative from Location

Inertial Navigation

• Downstream performance

Model	IONet [5]					RoNIN [19]						
Metrics	vx (m/s)	vy (m/s)	vz (m/s)	mean v (m/s)	ATE (m)	RTE (m)	vx (m/s)	vy (m/s)	vz (m/s)	mean v (m/s)	ATE (m)	RTE (m)
Original	0.0207	0.0642	0.0093	0.0314	0.3076	0.8194	0.0180	0.0621	0.0090	0.0297	0.2472	0.6337
Gaussian	0.0249	0.0496	0.0145	0.0297	0.6111	1.8727	0.0242	0.0498	0.0147	0.0296	0.5988	1.8427
DWT	0.0266	0.0732	0.0094	0.0364	0.3142	0.8079	0.0243	0.0714	0.0091	0.0349	0.2665	0.7023
DnCNN	0.0200	0.0235	0.0144	0.0193	0.3001	0.7891	0.0177	0.0213	0.0139	0.0176	0.2476	0.6598
TSTNN	0.2857	0.3250	0.0935	0.2348	0.6496	1.6575	0.2865	0.3253	0.0938	0.2352	0.6256	1.5794
DIP	0.1971	0.2650	0.0105	0.1576	0.5759	1.5108	0.1926	0.2570	0.0101	0.1533	0.3989	1.0358
N2N	0.0246	0.0144	0.0183	0.0191	0.3151	0.8317	0.0224	0.0122	0.0182	0.0176	0.2605	0.6956
PILOT	0.0102	0.0095	0.0031	0.0076	0.2998	0.7875	0.0081	0.0078	0.0017	0.0059	0.2413	0.6309

Example Trajectory 1

Example Trajectory 2

CO₂ Monitoring

• Reconstruction and physics alignment

Model	Recons (1	Recons (1 \times 10 ⁶ ppm)		$\times 10^{6}$ ppm)
Metrics	MSE	MAE	MSE	MAE
Original	1.5654	0.0020	0.1082	0.1908
Gaussian	0.6265	0.0016	0.0278	0.1019
DWT	1.5076	0.0020	0.1045	0.1846
DnCNN	1.5381	0.0020	0.1064	0.1897
TSTNN	0.0956	0.0007	0.0027	0.0498
DIP	0.0841	0.0006	0.0018	0.0308
N2N	0.4396	0.0018	0.0085	0.0789
PILOT	0.0371	0.0004	0.0012	0.0200

Experiments	
HVAC Control	

Reconstruction and physics alignment

Model	Reconstr	Reconstruction (K)		cs (K)
Metrics	MSE	MAE	MSE	MAE
Original	0.9479	0.8841	50.302	6.7184
Gaussian	0.8687	0.8782	49.528	6.7003
DWT	0.8553	0.8689	48.782	6.6471
DnCNN	0.3284	0.4786	50.380	6.7241
TSTNN	2.2980	1.1980	32.012	3.7260
DIP	3.7336	1.5098	29.747	3.7410
N2N	1.1830	0.9522	31.748	<u>3.6990</u>
PILOT	0.1994	0.3454	14.081	3.1600

Ablation Study

- w/o physics loss
- w/o reconstruction loss
- w/o 2-phase training

Task	Metrics	w/o $l_{\rm phy}$	w/o $l_{ m rec}$	w/o pre-train	PILOT
	MSE _a	316.5	259.1	20.70	1.8695
INIC	MAE _a	8.342	8.759	2.2930	0.6372
11105	MSE_{w}	0.3579	0.2845	0.1380	0.0380
	$\mathrm{MAE}_{\mathrm{w}}$	0.1899	0.3352	<u>0.1291</u>	0.0690
	MSE _{rec}	0.4641	0.0568	0.0724	0.0371
co	MAE _{rec}	0.0139	0.0051	0.0074	0.0047
CO_2	MSE _{phy}	0.0194	0.0021	0.0023	0.0012
	MAE _{phy}	0.0781	0.0264	0.0330	0.0200
	MSE _{rec}	0.3314	0.5314	0.2686	0.1994
HVAC	MAE _{rec}	0.4709	0.6128	0.4670	0.3454
	MSE _{phy}	50.22	14.69	14.469	14.081
	MAE _{phy}	6.713	3.263	<u>3.203</u>	3.1600

Sensitivity Analysis

• Adaptive loss ratio between physics loss and reconstruction loss works the best

• Random noise performs better than zero masking

Edge Deployment - Inertial Navigation

- Use Raspberry Pi 4 as an example edge device
- 8-bit training-aware quantization
- Time efficiency: 4 ms to denoise a 1s-sequence (100 readings)
- Memory efficiency (model size)

Metrics	Params	Size	Inference Time	CPU Usage
Efficiency	270K	284 KB	4 ms	25%

Outline

- Motivation
- Method
- Experiments
- Conclusion

Conclusion

- The first physics-informed sensor denoising algorithm
 - Inertial navigation
 - CO₂ monitoring
 - HVAC control system
- State-of-the-art denoising performance with real-world deployment

